Specifications and Ordering Information 330400 and 330425 Accelerometer Acceleration Transducers

Description

These accelerometers are intended for critical machinery applications where casing acceleration measurements are required, such as gear mesh monitoring. The 330400 is designed to address the requirements of American Petroleum Institute Standard 670 for accelerometers. It provides an amplitude range of 50 g peak and a sensitivity of $100 \mathrm{mV} / \mathrm{g}$. The 330425 is identical except it provides a larger amplitude range (75 g peak) and a sensitivity of $25 \mathrm{mV} / \mathrm{g}$.

\triangle Caution

If housing measurements are being made for overall protection of the machine, thought should be given to the usefulness of the measurement for each application. Most common machine malfunctions (imbalance, misalignment, etc.) originate at the rotor and cause an increase (or at least a change) in rotor vibration. In order for any housing measurement alone to be effective for overall machine protection, a significant amount of rotor vibration must be faithfully transmitted to the bearing housing or machine casing, or more specifically, to the mounting location of the transducer.

In addition, care should be exercised in the physical installation of the transducer. Improper installation can result in a degradation of the transducer's performance, and/or the generation of signals which do not represent actual machine vibration.

Upon request, Bently Nevada can provide engineering services to determine the appropriateness of housing measurements for the machine in question and/or to provide installation assistance.

Specifications

Parameters are specified at $+25 \pm 5^{\circ} \mathrm{C}\left(+77 \pm 9^{\circ} \mathrm{F}\right)$ unless otherwise indicated. Note: Operation outside the specified limits will result in false readings or loss of machine monitoring.

Electrical

330400
Sensitivity: $\quad 10.2 \mathrm{mV} / \mathrm{m} / \mathrm{s}^{2}(100 \mathrm{mV} / \mathrm{g}) \pm 5 \%$ at 100 Hz
Acceleration range: $\quad 490 \mathrm{~m} / \mathrm{s}^{2}(50 \mathrm{~g})$ peak overall acceleration within the 1 Hz to 20 kHz frequency span. Vibration at frequencies above 20 kHz , especially at the transducer's resonance, will significantly decrease this range.

Amplitude linearity	$\pm 1 \%$ to $490 \mathrm{~m} / \mathrm{s}^{2}(50 \mathrm{~g})$ peak	Electromagnetic Compatibility:	Meets all European EMC directives.
Noise floor:	0.004 g rms		
	10 Hz to 20 kHz	Hazardous Area Classification:	Multiple approvals for hazardous areas certified by Canadian
330425			Standards Association (CSA/NRTL/C) in North America
Sensitivity:	$2.5 \mathrm{mV} / \mathrm{m} / \mathrm{s}^{2}(25 \mathrm{mV} / \mathrm{g})$		and by LCIE/CENELEC in Europe.
	$\pm 5 \%$ at 100 Hz	CSA/NRTL / C:	Exia for Class I, Division 1, Groups
Acceleration range:	$735 \mathrm{~m} / \mathrm{s}^{2}(75 \mathrm{~g})$ peak overall		A, B, C and D; Class II, Division 1, Groups E, F and G; Class III,
	acceleration within the 1 Hz to 20		Division 1, when installed v
	kHz frequency span. Vibration at		approved zener barrier or galvanic
	frequencies above 20 kHz ,		isolator per drawing 132525.
	especially at the transducer's resonance, will significantly		T 3 C @ $\mathrm{Ta}=100^{\circ} \mathrm{C}, \mathrm{T} 5 @ \mathrm{Ta}=40^{\circ} \mathrm{C}$
	decrease this range.		Non-incendive for Class I, Division 2
Amplitude linearity:	$\pm 1 \%$ to $735 \mathrm{~m} / \mathrm{s}^{2}(75 \mathrm{~g})$ peak		when installed per drawing 132524.
Noise floor:		EUROPEAN:	EEx ia for Zone 0, Group IIC, LCIE
	0.01 grms		certificate number LCIE 98
	10 Hz to 20 kHz		ATEX6013 X, when installed with an
Both Units			isolator. T4 @ Ta=100 ${ }^{\circ} \mathrm{C}$, $\mathrm{T5}$ @
			$\mathrm{Ta}=40^{\circ} \mathrm{C}$
Frequency response:	10 Hz to 15 kHz		
	(600 cpm to $900,000 \mathrm{cpm}$) $\pm 3 \mathrm{~dB}$;		
	30 Hz to 10 kHz (1800 cpm to 600,000 cpm) $\pm 10 \%$	Mechanical	
Mounted resonant frequency:		Mounting Surface:	$32 \mu \mathrm{inch} \mathrm{rms}$
	30 kHz minimum		
	33 kHz typical	Mounting torque:	$3.4 \mathrm{~N} \bullet \mathrm{~m}$ ($30 \mathrm{in} \bullet \mathrm{lb}$.
Amplitude of resonant peak:	20 dB max	Case material:	300 Series stainless steel
Transverse sensitivity:	Less than 5\% of the Sensitivity at	Connector:	3-pin MIL-C-5015 Receptacle
	100 Hz	Weight (no cable):	80 g (2.5 oz), typical
Base strain sensitivity:	$0.100 \mathrm{~g} / \mu \mathrm{strain}$	Mounting angle:	Any orientation
	$0.0005 \mathrm{~g} / \mathrm{\mu strain}$ with 37439-01		
	Mounting Base		
	Power requirements	Environmental Limits	
dc voltage:	-24 Vdc	Operating and storage temperature:	$-55^{\circ} \mathrm{C}$ to $+121^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+250^{\circ} \mathrm{F}\right)$
Bias current:	2 mA nominal		
Output bias voltage:	-8.5 Vdc nominal	Relative humidity:	100\% condensing, non-submerged.
			Case is hermetically sealed.
Grounding:	Case isolated		
Maximum cable length:	305 metres (1000 ft) with no degradation of signal	Electromagnetic Com	patibility

Dimensional drawing

Figure 1: Acceleration Transducer dimensional drawing Dimensions are in millimetres (inches)

Figure 2: Typical Amplitude Response

Figure 3: 10 - 10,000 Hz Typical Amplitude Response Detail

