Softstarters

Type PST30...PSTB1050 Installation and Commissioning Manual

Manual 1SFC132003M0201 June 2007

This manual belongs to:

Softstarters

Type PST30...PSTB1050 Installation and Commissioning Manual

Manual 1SFC132003M0201 June 2007

Installation and Commissioning Manual PST30...PSTB1050

1 General

This is the Installation and commissioning manual for Softstarters PST30...PSTB1050 based on software version CU 05.02.xx (see STATUS INFORMATION menu)

Document number: 1SFC132003M0201

Edition: 04

Revision: 03

Issue date: 2007-06-29

Data subject to change without notice.

We reserve all rights to this document, even in the event that a patent is issued and a different commercial proprietary right is registered. Improper use, in particular reproduction and dissemination to third parties, is not permitted.

This document has been carefully checked. If the user nevertheless detects any errors, he is kindly asked to notify us as soon as possible.

The data contained in this manual is intended solely for the product description and is not to be deemed to be a statement of guaranteed properties. In the interests of our customers, we constantly seek to ensure that our products are developed to the latest technological standards.

As a result, there may be some differences between the softstarter and the information in this manual.

Author's address:

ABB Automation Products, Cewe-Control S-721 61 Västerås Sweden Tel: +46 (0) 21 32 07 00 Fax: +46 (0)21 12 60 01

http://www.abb.com/lowvoltage

© ABB Automation Technologies, Div. Automation Products, Cewe-Control

2 Safety

This chapter describes warning and information signs used in this manual, which the user should pay attention to.

The softstarter shall be installed by authorized personnel only.

This manual is a part of the softstarter and should always be accessible to personnel working with this product.

The manual shall always be read through before performing any installation or commissioning tasks.

3 Safety signs

3.1 Use of Caution, Warning, and Information

Caution!

Caution icon indicates the presence of a hazard which could result in personal injury.

Warning!

Warning icon indicates the presence of a hazard which could result in corruption of software or damage to equipment/property.

Information sign alerts the reader to pertinent facts and conditions.

Chapter		Page	
1	Introduction	9	
2	Quickstart	15	
3	Description	19	
4	Mounting	35	
5	Connection	41	
6	Human-Machine Interface (HMI)	61	
7	Settings and configuration	75	
8	Fieldbus communication (option)	119	
9	Maintenance	123	
10	Functions	127	
11	Trouble shooting	177	
12	Diagrams	189	
13	Index	193	
Cu	stomer feedback report	197	

Notes

Chapter 1 Introduction

About the complete set of documentation for a softstarter	11
About the installation and commissioning manual	11
Intended audience	11
General	11
Requirements	12
Chapters included	12
Revision notes	12
Acronyms and abbreviations	13

Introduction

Chapter 1 Introduction

1:1 About the complete set of documentation for a softstarter

For the softstarter, the following documents are available:

PST30...PSTB1050 Softstarters Installation and Commissioning Manual Document ID: 1SFC132003M0201 1SFC132003M2001 (Chinese) 1SFC132003M3101 (Dutch) 1SFC132003M1801 (Finnish) 1SFC132003M0301 (French) 1SFC132003M0101 (German) 1SFC132003M0901 (Italian) 1SFC132003M4001 (Polish) 1SFC132003M1601 (Portuguese) 1SFC132003M1101 (Russian) 1SFC132003M0701 (Spanish) 1SFC132003M3401 (Swedish) 1SFC132034M6501 (Thai) 1SFC132003M1901 (Turkish) 1SFC132003M2201 (US version)

Catalog Softstarters Document ID: 1SFC132004C0201

For other documents related to the PST Softstarters, see home page www.abb.com/lowvoltage

1:2 About the installation and commissioning manual

This manual contains instructions on how to install and commission the softstarter. The manual covers procedures for mechanical and electrical installation, and installation of communication devices. It also covers energizing, setting, and configuration and verifying settings. For quickest possible start read Chapter 2 "Quickstart".

1:2.1 Intended audiences

1:2.1.1 General

The installation and commissioning manual is intended for the installation, commissioning, and maintenance personnel responsible for putting the softstarter into normal service and out of service.

1:2.1.2 Requirements

The installation personnel must have a basic knowledge in handling electric equipment. The commissioning and maintenance personnel must be well experienced in using this kind of equipment.

1:2.2 Chapters included

- Introduction introduces the reader to this manual.
- *Quickstart* contains information on how to, in the quickest way, install the softstarter and put it into operation. This chapter is intended for the experienced user.
- *Description* describes the softstarter in general, its functions and specifications.
- *Mounting* contains information on receiving, unpacking and mounting the softstarter.
- *Connection* contains instructions on how to make the electrical connections as well as connections for communication devices.
- *Human-Machine Interface* describes the local Human-Machine Interface, how it works, and what it contains.
- Settings and configuration describes all possible settings and how to navigate in the menu system.
- *Fieldbus communication* describes how to install and set up the fieldbus communication.
- Maintenance describes what maintenance is needed.
- *Functions* describes all functions included in the softstarter, as well as the available minimum and maximum values and default values used.
- *Trouble shooting* contains instructions on how to quickly find and correct the most common faults.
- Diagrams contain a number of electrical diagrams for the softstarter itself, and also some typical application diagrams.

1:2.3 Revision notes

Please check home page www.abb.com/lowvoltage for latest information on revisions.

1:2.4 Acronyms and abbreviations

The following acronyms and abbreviations are used in this manual.

Acronym/ abbreviation	Description
BP	By-pass
DOL	Direct-on-line
FB	Fieldbus
FBP	Fieldbusplug
НМІ	Human-Machine Interface
IT	Information Technology
LCD	Liquid Crystal Display
LED	Light Emitting Diode
PCB	Printed Circuit Board
PLC	Programmable Logic Controller
PTC	Positive Temperature Coefficient
SC	Short Circuit
SCR	Silicon Controlled Rectifier
TOR	Top Of Ramp (full voltage)

Chapter 1 Introduction

Chapter 2 Quickstart

Connection	17
Configuration	18
Start of the motor	18

Quickstart

Figure 1:

1 Status indication LEDs

change or scroll

- 2 LCD display
- 3 Selection keys for selecting, changing and storing parameters
- 4 Navigation keys for navigating in the menus Arrows shown in the display indicates that the value/menu is possible to

Figure 2: Standard connection PST

Figure 3: Top level

This chapter is a short guide to how to connect, do the configuration and start the softstarter in the easiest way.

Warning!

Mounting, electrical connection and settings of the softstarter shall be made in accordance with existing laws and regulations and be performed by authorized personnel. Do not change any parameters in the Service Settings menu.

2:1 Connection

- 1. Mount the softstarter according to Chapter 4 "Mounting" .
- Be aware of the ambient temperature. Derating is required above 40 °C (104 °F).
- 3. Connect the main circuit: terminals 1L1 3L2 5L3 to the line side and terminals 2T1 4T2 6T3 to the motor side.
- 4. Connect the supply voltage: terminal 1 and 2 (100-250V 50/60Hz).
- 5. Connect the functional ground: terminal 3.

The wire shall be as short as possible, and be connected to the mounting plate. The mounting plate should also be earthed.

6. Connect the start/stop circuits: terminal 4, 5, 8, 9, and 10 according to the diagram, with 24V DC.

Warning!

Terminal 4, 5, 6, 7, 8, 9, 10, and 11 should be connected using 24V DC only. Other voltages may damage the softstarter and the warranty may no longer be valid.

- 7. Check that the main and supply voltage corresponds to the softstarter ratings.
- 8. Switch on the supply voltage.
- 9. The green "Power on" LED is on and the LCD shall appear as in Figure 3.

‡Application	Setting
Select	Back

Figure 4: Application setting menu

‡Centrifugal	Pump
Store Set	Back

Figure 5: Centrifugal pump

Centrifugal	Pump
Next	Back

Figure 6: Centrifugal pump stored

Figure 7: Setting Ie

Setting	le	99.0A
Next		Back

Figure 8: Setting Ie stored

OL Class	10 ‡
Store	

Figure 9: OL Class

OL Class	10
Next	Back

Figure 10: OL class stored

Ext ByPass	No ‡
Store	

Figure 11: External Bypass

Ext ByPass	No
Next	Back

Figure 12: External Bypass stored

Ready?	
Yes	Tune Set

Figure 13: Ready / Tune Set

2:2 Configuration

- 1. Enter the Application Setting by pressing left selection key twice. Press *Select* using the left selection key. Figure 4.
- 2. Select the appropriate type of load using navigation keys. Figure 5.
- 3. Press *Store Set* and *Next* to continue or *Back* to previous parameter using the selection keys. Figure 6.
- Set the Setting le using the navigation keys. In Line connected = rated motor current inside Delta connected = 58% (1/(√3)) of the rated motor lcurrent. Figure 7.
- 5. Press *Store* and *Next* to continue or *Back* to previous parameter using the selection keys. Figure 8.
- 6. Set the required overload class using the navigation keys. Figure 9.
- 7. Press *Store* and *Next* to continue or *Back* to previous parameter using the selection keys. Figure 10.
- If an external by-pass contactor is used set *Ext ByPass* to Yes using the navigation keys. (PST30...300 only). Figure 11.
- 9. Press *Store* and *Next* to continue or *Back* to return to previous parameter using the selection keys. Figure 12.
- 10.Select Yes if ready or *Tune Set* if start/stop mode, ramp types, initial/end voltage, current limits etc. needs to be adjusted using selection keys. Figure 13.
- 11. To change presentation language, see section 7:2.5.

2:3 Start of the motor

- 1. Switch on the main voltage.
- Give start command to the softstarter. (To start the softstarter from the keypad, enter the LOCAL CONTROL menu, select *Start/Stop*, and press *Start*. The motor must be stopped before leaving this menu.)

Chapter 3 Description

Overview	21
Functions	22
Markings and connections	24
Type designation	25
Industrial ^{IT}	25
Environmental influence	
Specifications	26
Technical data	27
General	27
Semi-conductor fuses	
Softstarter types	
Weights	30
UL information	30
Dimensions	

Description

Chapter 3 Description

This chapter describes the softstarter in general, specifications as well as available accessories and spare parts.

3:1 Overview

The PST softstarter is a microprocessor-based softstarter designed with the latest technology for soft start and soft stop of squirrel cage motors. The softstarter has several advanced motor protection features as standard.

The softstarter is designed to be used with or without a bypass contactor except for the larger sizes, PSTB370...1050 where the by-pass contactor is integrated. In an emergency case, it is possible to start the motor DOL with this contactor (mind the ratings).

The keypad on the front is designed to be as user-friendly as possible, with a clear text display. It is possible to choose between 13 user languages.

The softstarter can be controlled in four ways:

- · Hardware inputs control
- · Keypad control (local)
- · Fieldbus communication interface
- External keypad (option)

The integrated fans for cooling are operated only during ramping (start/stop) and when the temperature of the heat sink is too high. The temperature is monitored by a thermistor.

Only one type of control method can be enabled simultaneously. Default selection is hardware inputs control.

Keypad control has the highest priority and overrides the other control methods.

3:2 Functions

The PST softstarter has several integrated protection and warning functions. Almost any type of fault can also be detected and displayed. All available protections, warnings, and fault indications are

Start/Stop functions

· Start ramp

listed below.

- Stop ramp (soft stop)
- · Initial voltage
- End voltage
- Step down voltage
- Current limit
- Kick Start
- · Extended start range
- Extended stop range
- · Sequence start
- Torque control

Protection functions

- Motor overload protection
- Locked rotor protection
- Motor underload protection
- · High current protection
- Phase imbalance protection
- · Phase reversal protection
- Thyristor overload protection
- PTC input for motor protection

Warning functions

- · High current warning
- · Low current warning
- Motor overload warning
- · Thyristor overload warning

Fault Supervision functions

- Phase loss
- Fieldbus communication
- Frequency out of range
- Heat sink over-temperature
- Thyristor short circuit
- By-pass doesn't open
- By-pass doesn't close
- Connection fault
- Non conducting thyristor
- Line side fault
- Kick-current fault
- Internal softstarter fault

Other functions

- Jog
- · Real time clock
- Event log
- Keypad password

3:3 Markings and connections

Figure 1: Markings and connections

3:4 Type designation

3:5 Industrial IT

Thanks to ABB's broad program of product standardization, today's Industrial IT components are - whether they are products or systems, hardware or software - the building blocks of larger solutions, incorporating functionalities that will allow seamless interactions in real-time automation and information systems.

At the product level, ABB's Industrial IT enabled symbol ensures that all the products can intercorporate perfectly. All product information pertaining to these products is available in electronic format, based on Aspect ObjectTM technology. The Industrial IT commitment from ABB ensures that every product is equipped with the tools necessary to install, operate, and maintain it efficiently throughout the product's life cycle.

The PST softstarters is an Industrial IT enabled product. Documentation such as brochures, catalogs, certificates, and drawings included can be found at *www.abb.com/lowvoltage*.

3:6 Environmental influence

The product is designed to minimize the environmental affects during manufacturing and use of the product. Most of the materials used, are of recycle type and shall be handled and recycled according to existing laws.

Further information regarding used material and recycling of the product can be found at:

www.abb.com/lowvoltage

3:7 Specifications

Degree of protection	IP 10 for PST3072
(Main circuit)	IP 00 for PST851050
Operating position	Vertical at $\pm 10^{\circ}$
Ambient temperature	Storage: -25 °C to +70 °C (-13 °F to 158 °F) Operation: 0 °C to +40 °C (32 °F to 104 °F without derating +40 °C to +50 °C (104 °F to 122 °F) with derating 0.8% / °C (0.8%/ 33.8°F)
Altitude	1000 m (3281 ft.) above sea level without derating 1000 - 4000 m (3281 - 13123 ft.) with derating 0.007% /m
Pollution degree	3
Relative humidity	5 - 95% (non condensing)
Standards	IEC 60947-1 IEC 60947-4-2 EN 60947-1 EN 60947-4-2
Standards UL	UL508
PTC input	IEC 60947-8 Mark A detectors DIN 44081 and DIN 44082
Marine approvals	Contact your ABB sales office

3:8 Technical data

3:8.1 General

General data	
Rated insulation voltage, U _i	690 V
Rated operational voltage, U _e	208 - 600 V / 400 - 690 V
Rated supply voltage, U _s	100 - 250 V 50/60 Hz
Rated frequency	50 / 60 Hz
Voltage tolerances	+10% to -15%
Frequency tolerances	± 5%
Rated impulse withstand voltage	2 kV
Number of controlled phases	3
Programmable inputs	24 V DC, 10mA
Output relays	250 V AC, Ith = 5A, Ie = 1.5A (AC-15)
Back-up battery D20mm	Lithium 3V CR2032
PTC input	2825 ohm \pm 20% switch off resistance 1200 ohm \pm 20% switch on resistance
Cooling system	Fan
Recommended fuse supply circuit	6A Delayed MCB use C characteristics
Service factor	115% (100% for PSTB1050)
Communication protocols	AS-Interface / DeviceNet / Profibus DP / Modbus

3:8.2 Semi-conductor fuses

Softstarter type, 600 V	Bussma	nn fuses	Holders
and 690 V	Α	Туре	
PST30	80	170M1366	170H1007
PST37	125	170M1368	170H1007
PST44	160	170M1369	170H1007
PST50	160	170M1369	170H1007
PST60	200	170M1370	170H1007
PST72	250	170M1371	170H1007
PST85	315	170M1372	170H1007
PST105	400	170M3019	170H3004
PST142	450	170M3020	170H3004
PST175	500	170M3021	170H3004
PST210	630	170M5012	170H3004
PST250	700	170M5013	170H3004
PST300	900	170M5015	170H3004
PSTB370	700	170M5013	170H3004

Softstarter type, 600 V	Bussma	Holders	
and 690 V	Α	Туре	
PSTB470	900	170M5015	170H3004
PSTB570	900	170M5015	170H3004
PSTB720	1250	170M5018	170H3004
PSTB840	1500	170M6018	170H3004
PSTB1050 xxx-600-70	1800	170M6020	170H3004
PSTB1050 xxx-690-70	1600	170M6019	170H3004

3:8.3 Softstarter types

Туре	PST30		PST37		PST44		PST50	
Connection type	Line	Delta	Line	Delta	Line	Delta	Line	Delta
Rated current I _e (A)	30	52	37	64	44	76	50	85
Motor size 380 - 415V (kW)	15	30	18.5	30	22	37	25	45
Motor size 480V (hp)	20	30	25	40	30	50	40	60
Motor size 600V (hp)	25	40	30	50	40	60	50	75
AC-3 rating built in by-pass 400V (A)	-		-		-		-	
Power loss at rated current (W)	100		120		140		160	
Power supply requirements (VA)	5		5		5		5	

Туре	PST60		PST72		PST85		PST105	
Connection type	Line	Delta	Line	Delta	Line	Delta	Line	Delta
Rated current I _e (A)	60	105	72	124	85	147	105	181
Motor size 380 - 415V (kW)	30	55	37	59	45	75	55	90
Motor size 480V (hp)	(40)	(60)	50	75	60	100	75	125
Motor size 600V (hp)	(50)	(75)	60	100	75	125	100	150
AC-3 rating built in by-pass 400V (A)	-		-		-		-	
Power loss at rated current (W)	190		230		270		325	
Power supply requirements (VA)	5		5		10		10	

Туре	PS	PST142		PST175		PST210		ST250	
Connection type	Line	Delta	Line	Delta	Line	Delta	Line	Delta	
Rated current I _e (A)	142	245	175	300	210	360	250	430	
Motor size 380 - 415V (kW)	75	132	90	160	110	184	132	220	
Motor size 480V (hp)	100	150	125	200	150	250	200	300	
Motor size 600V (hp)	125	200	150	250	200	300	250	350	
AC-3 rating built in by-pass 400V (A)	-	-		-		-		-	
Power loss at rated current (W)	435	435		540		645			
Power supply requirements (VA)	10		15		15		15		

Туре	PST300		PSTB370		PSTB470		PSTB570	
Connection type	Line	Delta	Line	Delta	Line	Delta	Line	Delta
Rated current I _e (A)	300	515	370	640	470	814	570	987
Motor size 380 - 415V (kW)	160	257	200	355	250	450	315	475
Motor size 480V (hp)	250	400	300	500	400	600	500	700
Motor size 600V (hp)	300	500	350	600	500	700	600	800
Contactor type	-		AF300		AF300		AF460	
AC-3 rating built in by-pass 400V (A)	-		305		305		460	
Power loss at rated current (W)	920		90		110		105	
Power supply requirements (VA) / pull in (VA)	15		20/480		20/480		25/900	

Туре	PSTB720		PSTB840		PSTE	31050
Connection type	Line	Delta	Line	Delta	Line	Delta
Rated current I _e (A)	720	1247	840	1455	1050	1810
Motor size 380 - 415V (kW)	400	670	450	780	560	875
Motor size 480V (hp)	600	1000	700	1200	900	1500
Motor size 600V (hp)	700	1200	800	1500	1000	1800
Contactor type	AF580)	AF750		AF750	
AC-3 rating built in by-pass 400V (A)	580	580			750	
Power loss at rated current (W)	110	110		170		
Power supply requirements (VA) / pull in (VA)	25/860)	25/860		25/860	

3:8.4 Weights

Туре	Weight in kg	Weight in Ibs
PST3050	4.8	10.6
PST6072	5.0	11.0
PST85	11.2	24.7
PST105142	13.0	28.7
PST175210	21.5	47.4
PST250300	23.0	50.7
PST370470	31.0	68.3
PSTB570	52.0	114.6
PSTB720	55.0	121.3
PSTB8401050	60.0	132.3

3:8.5 UL information

Equipment suitable for use in a circuit with maximum available fault current as shown when protected by devices indicated.

Suitable for use on a circuit capable of delivering not more than 1) rms symmetrical Amperes, 2) Volts maximum when protected by 3) class fuse or by a circuit breaker having an interrupting rating not less than 4) rms symmetrical Amperes, 2) Volts maximum.

Softstarter short circuit rating

Model	Rating (kA)	Max V	Fuse (A)	MCCB (A)
	1)	2)	3)	4)
PST30142	10	600	Any UL-listed	Any UL-listed
PST175300	18	600	Any UL-listed	Any UL-listed
PSTB370570	30	600	Any UL-listed	Any UL-listed
PSTB720	42	600	1200/L	1200
PSTB840	42	600	1200/L	1200
PSTB1050	85	480		1200
PSTB1050	85	600	1200/L	
PSTB1050	42	600		1200
PST30300 PSTB3701050	65	600	TYPOWER ZILO **)	

**) Fuses size per softstarter - please see table in Chapter 3.8.2 - Semiconductor fuses.

Figure 2: Dimensions PST30...72 (mm) (1 mm = 0.0394 in)

PST85...142

Figure 3: Dimensions PST85...142 (mm) (1 mm = 0.0394 in)

Figure 4: Dimensions PST85..142 with marine kit (mm) (1 mm = 0.0394 in)

PST175...300

Figure 5: Dimensions PST175..300 (mm) (1 mm = 0.0394 in)

Figure 6: Dimensions PSTB370...470 (mm) (1 mm = 0.0394 in)

PSTB570...1050

Figure 7: Dimensions PSTB570...1050 (mm) (1 mm = 0.0394 in)

Chapter 3 Description

Chapter 4 Mounting

Receiving, unpacking and checking	
Intermediate storage	
Mounting	
Handling when mounting	
Requirements	
Minimum distance to wall/front	
Minimum enclosure sizes	
Addings for marine applications	

Mounting
Chapter 4 Mounting

This chapter describes instructions on how to receive the softstarter and how to mount it in a proper way.

4:1 Receiving, unpacking and checking

- Check that the package is turned with the correct side up, figure 1.
- Check for transport damages.
- · Remove the transport casing.
- Visually inspect the softstarter.
- Check that the serial number corresponds with the delivery documents.
- Check that all items are included, according to the delivery note.
- Check the softstarter as well as the package. If you find any damages, please contact the transport company or the supplier immediately.

4:1.1 Intermediate storage

Until the softstarter is mounted it should be stored in its package.

4:2 Mounting

4:2.1 Handling when mounting

The softstarter is available in five physical sizes. The models PST30 to PST300 can be taken out of the packages and be mounted without lifting equipment.

For mounting of models PSTB370 to PSTB1050, lifting equipment is recommended due to the weight. See Chapter 3 "Description", for weights.

Warning!

Do not lift the softstarter in the connection bars, since it may cause damage to the product.

Figure 1: Package

Figure 2: Airways

Figure 2: Minimum distances, wall/front

4:2.2 Requirements

See Chapter 3 "Description" for environmental requirements.

4:2.3 Minimum distance to wall/front

To have a suitable cooling, the softstarter has to be mounted vertically, and in such a way that the airways are not blocked, see figure 2.

Follow the minimum distances to wall/front, figure 2 and the table below.

The values are minimum distances.

Softstarter type	A (mm)	B (mm)	C (mm)
PST3072	100	10	20
PST85300	100	10	20
PST175300	100	10	20
PSTB370470	150	15	20
PSTB5701050	150	15	20

(1mm = 0.0394 in)

4:2.4 Minimum enclosure sizes

In applications where the softstarter is installed in an enclosure, the following minimum enclosure sizes and fan capacities are recommended.

	Minimum enclosure dimensions			
Softstarter type	W	н	D	Fan capacity
PST3072	300	400	250	42 m ³ /h
PST85142	400	500	300	95 m ³ /h
PST175300	500	600	300	210 m ³ /h
PSTB370470	600	600	400	210 m ³ /h
PSTB5701050	750	900	400	210 m ³ /h

(1mm = 0.0394 in)

Dimensions and drilling plan

See Chapter 3 "Description" .

4:2.5 Addings for marine applications

In order to be used in marine applications, the softstarter has to be installed in a sheet steel enclosure. For the allowed dimensions, see chapter 4:2.4.

For softstarters PST85...142 use the Marine kit 1SFA899004R1000.

Chapter 4 Mounting

Chapter 5 Connection

General	43
Electrical connection	43
Main circuit	43
External By-Pass contactor	45
Protective earthing	45
Supply voltage and control circuit	47
Supply voltage, terminals 1 and 2	47
Earthing, terminal 3	47
Start and Stop, terminals 4, 5, 8, 9, 10, 11	48
Programmable inputs, terminals 6 and 7	50
Programmable output relay K4, terminals 12, 13 and 14	52
Programmable output relay K5, terminals 15, 16 and 17	52
Programmable output relay K6, terminals 18, 19 and 20	53
PTC input	53
Analog output	54
Emergency closing of contactor (PSTB3701050 only)	54
Connection of communication devices (optional)	56
Fieldbus communication	56
External keypad	57
Transferring of parameters	58
Uploading of parameters	58
Downloading of parameters	58
Technical data	59

Connection

Chapter 5 Connection

This chapter describes the electrical connections as well as connections for communication devices that have to be made before you can use the softstarter.

5:1 General

Caution!

All wiring and connection must be carried out by a qualified electrician, and in accordance with installation standards and safety regulations.

For quickly minimized connection, see Chapter 2 "Quickstart"

5:2 Electrical connection

5:2.1 Main circuit

Softstarters PST30...PSTB1050 can be connected both "In Line", see Figure 1, and "Inside Delta", see Figure 2.

Figure 1: In Line connection

Figure 2: Inside Delta connection

Connect the line side to terminals 1L1, 3L2, 5L3.

Connect the motor to terminals 2T1, 4T2, 6T3 on the motor side.

The terminal marking is printed on the front label.

Tightening torques and cable thickness, see Figure 6.

When used for marine applications, please use standard installation cables with concentric conductors for earth. This earth conductor shall be 360 degree connected to earth in the cable glands or in the near of the gland.

Warning!

Capacitors for power factor compensation are not allowed in between the softstarter and the motor, since this can cause current peaks which can burn the thyristors in the softstarter. If such capacitors are to be used, they should be connected on the line side of the softstarter.

Figure 3: Connection of line side and motor side

Figure 4: Connection of external by-pass contactor

5:2.1.1 External By-Pass contactor

An external by-pass contactor can be used for softstarters size PST30...300 (built in for size PSTB370...1050).

Connect the contactor to terminals B1, B2, and B3 on the line side and terminals 2T1, 4T2, and 6T3 on the motor side.

The terminal marking is printed on the front label.

If an external By-pass contactor is used an output relay should be configured as TOR and be connected to the contactor. The by-pass contactor is then activated when the voltage reaches 100% and the current has been below $1.2 \times I_e$ continuously for 1 s or after a 3 s timeout.

Do not use terminals B1, B2 or B3 for the "Inside Delta" connection. The current measurement will be wrong.

5:2.1.2 Protective earthing

Softstarters type PST85...PSTB1050 should be earthed using the terminals as shown in Figure 5 (one connection is sufficient).

Warning!

Do not operate machine with the grounding wire disconnected.

Figure 5: Protective earthing

Figure 6: Tightening torques and cable dimensions (1 mm=0.0394 in)

5:2.2 Supply voltage and control circuit

When used for marine applications, and if feeding from the outside of the enclosure, then please use a standard cable for feeding the supply voltage and for the control circuit, with an auxiliary bare conductor (earth conductor) and make a 360 degree connection to earth in the glands, or close to the glands. As long as these cables / wires are only internal wiring, inside the enclosure, there is no need for the 360 degree earth connections / protections.

5:2.2.1 Supply voltage, terminals 1 and 2

Connect neutral and phase to terminal 1 and 2.

Check that you have the correct supply voltage U_s .

Figure 7: Supply voltage

Figure 9: Tightening torques and cable dimensions (1 mm=0.0394 in)

5:2.2.2 Earthing, terminal 3

Connect the cable to a earthing point close to the softstarter. The cable should be as short as possible. A suitable earthing point would be next to the softstarter on the mounting plate, see Figure 8. The mounting plate should also be earthed.

1

This is not a protective earth, it is a **function earth**. The earthing cable should be as short as possible. Maximum length 0.5 m.

Figure 10: Terminals 4, 5, 8, 9, 10, 11

5:2.2.3 Start and Stop, terminals 4, 5, 8, 9, 10, 11

Internal control voltage

The softstarter has a built-in holding circuit which does not require any external power source for start and stop, see Figure 11.

A conventional circuit with auxiliary relay is also possible, see Figure 12.

Figure 11: Holding circuit (pulse for start is enough)

Figure 12: Conventional circuit (maintained start signal required)

Figure 13: Tightening torques and cable dimensions (1 mm=0.0394 in)

External control voltage

The softstarter can, if required, also be used with an external 24 V DC source from a PLC or similar.

Connect the cables according to Figure 14 or Figure 15 depending on which type of control method is used.

Warning!

Terminal 4, 5, 6, 7, 8, 9, 10, and 11 should be connected using 24V DC only. Other voltages may damage the softstarter and the warranty may no longer be valid.

Figure 14: Holding circuit with external control voltage (pulse for start is enough)

Figure 15: Conventional circuit with external control voltage (maintained start signal is required)

Figure 16: Tightening torques and cable dimensions (1 mm=0.0394 in)

Figure 17: Terminals 6, 7

5:2.2.4 Programmable inputs, terminals 6 and 7

The softstarter has two programmable inputs.

In0, default reset event.

In1, default reset event.

See Chapter 7 "Settings and configuration" for programming.

1. Connect the cables according to Figure 18 or Figure 19 depending on whether internal or external source is used.

Wiring for sequence start, see next page.

Warning!

Terminal 4, 5, 6, 7, 8, 9, 10, and 11 should be connected using 24V DC only. Other voltages may damage the softstarter and the warranty may no longer be valid.

Figure 18: Internal control voltage

Figure 19: External control voltage

Figure 20: Tightening torques and cable dimensions (1 mm=0.0394 in)

Programmable inputs (Sequence start)

When sequence start is going to be used, the wiring should be according to Figure 21 or Figure 22.

The start command (terminal 5, 6, and 7) must be maintained during the complete start sequence and run otherwise a direct stop will be performed.

Soft stop can only be performed for the motor currently fed by the softstarter and will be achieved by open the Stop command (terminal 4).

Figure 21: Internal control voltage

Figure 22: External control voltage

Figure 23: Tightening torques and cable dimensions (1 mm=0.0394 in)

Figure 24: Terminals 12, 13, 14

Figure 25: Terminals 15, 16, 17

5:2.2.5 Programmable output relay K4, terminals 12, 13, and 14

The output relay gives signal depending on the selected function. Default: Run See Chapter 7 "Settings and configuration" for programming.

1. Connect the cables to terminal 12, 13, and 14.

5:2.2.6 Programmable output relay K5, terminals 15, 16, and 17

The output relay gives signal depending on the selected function. Default: Top of ramp See Chapter 7 "Settings and configuration" for programming.

Connect the cables to terminal 15, 16, and 17.

Figure 26: Tightening torques and cable dimensions (1 mm=0.0394 in)

5:2.2.7 Programmable output relay K6, terminals 18, 19, and 20

The output relay gives signal depending on the selected function. Default: Event See Chapter 7 "Settings and configuration" for programming.

1. Connect the cables to terminal 18, 19, and 20.

Figure 27: Terminals 18, 19, 20

Figure 28: PTC connection

5:2.2.8 PTC input

If the motor is protected by PTC elements, the cables shall be connected to terminals 23 and 24, see Figure 28. See Chapter 7 "Settings and configuration" for programming.

The PTC input uses the same terminals as the Analog output and only one of these functions can be used at any given time.

Figure 29: Tightening torques and cable dimensions (1 mm=0.0394 in)

5:2.2.9 Analog output

If the analog output is used, the cables shall be connected to terminals 23 and 24, see Figure 30.

See Chapter 7 "Settings and configuration" for programming.

The PTC input uses the same terminals as the Analog output and only one of these functions can be used at any given time.

Figure 30: Analog output connection

5:2.3 Emergency closing of contactor (PSTB370...1050 only)

If the softstarter for some reason malfunctions (shorted or non conducting thyristors, burnt PCB etc) it is possible to close the integrated by-pass contactor and start the motor using some other starting equipment. Manual closing of the contactor is done using terminals 30 to 33.

Figure 32 shows how terminals 30 to 33 are connected during normal operation. If there is a need for an emergency closing of the contactor, the two bridges between 30, 31 and 32, 33 should be removed and an external power source should be connected between terminals 31 and 32. See Figure 33. This will cause the by-pass contactor to close and it will be possible to start the motor using some other starting equipment, connected on the line side of the softstarter.

Figure 31: Tightening torques and cable dimensions (1 mm=0.0394 in)

Figure 32: Connection when the contactor is operated from the keypad (factory wiring)

Figure 33: Connection when the by-pass contactor is operated separately (emergency DOL)

120 000000000000000000000000000000	M3 0,5 Nm - 4,3 lb.in	3,5x0,6	0,14 2,5 mm ² AWG 12 22 0,14 2,5 mm ²
---------------------------------------	--------------------------	---------	---

Figure 34: Tightening torques and cable dimensions (1 mm=0.0394 in)

Figure 35: Fieldbusplug

5:3 Connection of communication devices (optional)

5:3.1 Fieldbus communication

The fieldbus communication plug shall be connected to the communication interface on the front of the PST, see Figure 35.

Make sure that the plug is in correct position and tighten the screw with 0.8 Nm (7.1 lb in) and additional 1/4 turn.

For programming and other information,

see Chapter 7 "Settings and configuration" and Chapter 8 "Fieldbus communication (option)".

Figure 36: Principle of a fieldbus network with PST softstarters connected

5:3.2 External keypad

An external keypad for door mounting can be connected to the softstarter. A 3-meter cable including both the serial communication and the power supply to the keypad makes the connection. The cable shall be connected to the external keypad connection at the bottom of the softstarter.

The external keypad can also be used for transferring parameters from one softstarter to another during commissioning (temporarily handheld). Note that IP66 cannot be achieved when the keypad is not mounted.

When the external keypad is used, both keypads will work in parallel but the softstarter keypad has always the highest priority if the keys on both units are pressed simultaneously.

Periateron

Figure 37: Extenal keypad

Figure 38: Connection of external keypad

5:3.3 Transferring of parameters

To transfer(copy) parameters from one softstarter to another, connect the keypad to the chosen softstarter and follow the sequence below.

5:3.3.1 Uploading of parameters

Figure 39: Upload

Figure 40: Download

Enter the menu *Transfer par*. Select *To Keypad* and confirm by pressing *Select*. A text *Load to keypad* will be displayed. Continue by pressing *Execute* and then *Yes* when the text *Are you sure* is displayed. *Transfer OK* will now be displayed if the transmission was successful, otherwise *Transfer NOT OK*.

5:3.3.2 Downloading of parameters

To download the parameters, connect the keypad to the chosen softstarter and select *To Starter*. A text *Load to Start* will be displayed. Continue by pressing *Execute* and then *Yes* when the text *Are you sure* is displayed. *Transfer OK* will now be displayed if the transmission was successful, otherwise *Transfer NOT OK*. Set the parameter *Setting le* and confirm by pressing *Next*.

The parameters in the menu Service Settings will not be transferred.

How to operate the keypad, see Chapter 6 "Human-Machine Interface (HMI)".

5:3.3.	3 Te	chni	cal	data

General data	
Display	LCD type
Signal indication LEDs	<i>Power on</i> : Green <i>Protection</i> : Yellow <i>Fault</i> : Red
Ambient temperature	Storage: -25 °C to +70 °C (-13 °F to 158 °F) Operation: 0 °C to +50 °C (32 °F to 122 °F)
Degree of protection	IP66
UL approval	Type 1 Type 4X Indoor Type 12
Marine approvals	Contact your ABB sales office

Chapter 5 Connection

Chapter 6 Human-Machine Interface (HMI)

Overview	63
Application	63
Design	64
Password	
Setting password	
Wrong password	66
Locking/unlocking the keypad	67
Menu tree	68
Overview	
Top level	69
Settings menu	69
Local Control menu	
Start/Stop the motor	
Jog	71
DOL start	71
Event Log menu	
Status Information menu	
Reset Events menu	

Chapter 6 Human-Machine Interface (HMI)

This chapter describes how the human-machine interface (keypad and display) works.

6:1 Overview

6:1.1 Application

The Human-Machine Interface is used for several purposes such as programming the softstarter, i.e. setting up inputs and outputs, protection functions, warning levels, fieldbus communication etc. The HMI is also used for monitoring, local control and status information of the softstarter.

Figure 1: Human-Machine Interface

- 1 Status indication LEDs
- 2 LCD display
- 3 Selection keys
- 4 Navigation keys

Figure 2: Menu examples

1 Scrolling icons

6:1.2 Design

The HMI consists of:

- · Status indication LED indicators
- · LCD display
- Selection and Navigation keys

The LED indicators work as follows:

LED	Color	Description
Power on	Green	Supply voltage connected.
Fault	Red	Indicates faults.
Protection Yellow Indicates that protections are activated.		
When Fault or Protection LED is activated, the LCD display displays the actual fault or protection.		

The keypad is based on the same user concept as today's mobile phones.

The LCD display contains two rows which allow 20 characters each.

On the top row various information is presented, depending on state. On the bottom row there are labels indicating which function the selection keys currently have.

A scrolling icon indicates what parameter or setting value is possible to change at the position.

The *Selection keys* normally have more than one function, such as selecting, changing and storing, depending on present dialogue, see text on the bottom row of the LCD display.

The *Navigation keys* are used for navigating in the menus to the desired setting.

When selecting from a list, the scrolling is done in a closed loop.

The functionality of the keypad is illustrated by the following example:

Changing the Rated motor current (Setting I_e).

1. You will find the setting as well as a short explanation and the path to it in Chapter 10 "Functions" .

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop /Setting le

- 2. The top level of the softstarter start menu looks as in figure 3. Press the left selection key to enter the menu. The display now appears as in figure 4.
- 3. Press the left selection key to select SETTINGS. The display appears as in figure 5.
- 4. Press the lower navigation key until the display appears as in figure 6.
- 5. Press the left selection key to select Functional settings. Press the left selection key to select Start/Stop, figure 7.
- 6. Press the left selection key to Change the Setting le setting, figure 8.

The display now appears as in figure 9.

- 7. Use the navigation keys to set the rated current. If you want to quit, you select *Cancel*, using the right selection key. Or else, you store the new setting by selecting Store with the left selection key. The display should now appear as in figure 10.
- 8. Press the right selection key four times to return to top level.

Figure 6: Functional settings menu

Figure 7: Start/Stop menu

‡Setting le	100A
Change	Back

Figure 8: Setting Ie menu

Setting le	100A ‡
Store	Cancel

Figure 10: Setting Ie menu, changed setting

tU= 0%

Menu

I=0.0A

Olore	L L		
Figure 9.	Setting Ie	С	

‡Change	Password
Select	Back

Figure 11: Change password

New Password	1
Store	Back

Figure 12: New password

Figure 13: New password stored

Wrong Password Next

Figure 14: Wrong password

Figure 15: Support code

6:1.3 Password

To lock the keypad from control and change of settings, a password can be set. When the keypad is locked, all menus are available but no changes can be done nor any actions can be taken.

6:1.3.1 Setting password

The password at delivery is always 1.

- 1. Press the upper navigation key once to enter the parameter *Change Password*.
- 2. Select Change Password, figure 11.
- Set the new password (*No* or 1...255) using the navigation keys.
 Select *Store* and *Next*, figure 12 and figure 13.

Select Back to return to top level.

6:1.3.2 Wrong password

If wrong password is set, the text "Wrong Password" will show up, figure 14.

A support code will be given, figure 15. The code can be ignored and an unlimited number of try-outs can be made. If you are unable to unlock the keypad, note the support code and contact your local ABB sales office.

6:1.4 Locking/unlocking the keypad

- 1. Press the upper navigation key twice to enter the parameter *Keypad is*, figure 16.
- 2. The keypad is unlocked if the display is indicating *Active* in the upper right corner.
- 3. Lock the keypad.

Select Lock.
 Enter the correct password
 Select Enter. Keypad is now locked.
 Select Back to return to top level.

5. Unlock the keypad.

Select Unlock.
 Enter the correct password
 Select Enter. The keypad is now active.
 Select Back to return to top level.

‡Keypad is Active Lock Back

Figure 16: Keypad is menu

‡Keypad is	Locked
Unlocked	Back

Figure 17: Locked keypad menu

6:2 Menu tree

6:2.1 Overview

The menu tree includes menus for

- Settings
- Local Control
- Event Log
- Status information
- Reset events

Figure 18: Menu tree

6:2.2 Top level

Top Level contains general softstarter information, and the menus can be reached from here. The selections are presented one by one on the top row. Use navigation keys to present all selections. Press Select to enter a function.

Press Back to return to previous state.

Function	Description
Settings	Set up softstarter parameters.
Local Control	Control the softstarter.
Event Log	Present the Event Log, faults, pro- tections, warnings.
Status Information	Present various information.
Reset Events	Reset of events.

6:2.3 Settings menu

The settings menu is used to set up the softstarter with parameters for the current application.

The types of settings are presented one by one on the top line.

Use navigation keys to present all selections.

Function	Description
Application Setting	Use predefined parameters for type of applications.
Basic settings	The basic and most used settings.
Functional settings	Settings are arranged after func- tions.
Presentation settings	Language, date, time etc.
Service settings	Settings for use during service and repair.
All settings	A list with all possible settings.
Changed settings	A list with all changed settings.
Reset all settings	Reset all settings to factory default settings.
Operation Mode	Test mode for the softstarter.

6:2.4 Local Control menu

The Local Control menu is used to start or stop the motor from the keypad. When a type of local control is selected the softstarter can only be controlled by the keypad. The softstarter operation state (stopped/running) remains when selecting local control until it is changed there. Previous type of control is activated again when the local control is exited.

Three different selections are possible (see the table below). Press navigation keys to view different types of control.

The LOCAL CONTROL menu can not be entered if Sequence start is selected.

Once the motor has been started in this menu, it must first be stopped before you leave the menu. If the motor is already running when the menu is entered it is possible to leave immediately without stopping the motor.

Function	Description
Start/stop	To start and stop the motor with the keypad.
Jog	To run the motor as long as Jog is pressed.
DOL start (PSTB370PSTB1050 only)	To start and stop the motor with the built-in by-pass contactor.

6:2.4.1 Start/Stop the motor

Start

Enter the Start/Stop menu, figure 22. Select *Start*. The motor will now start and run according to the set parameters.

Stop

Select *Stop*. The motor will stop according to the set parameters. It is possible to press stop command during the start ramp if required.

Settings Start/Stop Local Control Jog DOL Start Event Log Status Information - Reset Events

Figure 24: DOL start menu

6:2.4.3 DOL start

(PSTB370...1050 only)

Start from the softstarter

If required, the motor can be started DOL (Direct On Line) with the integrated by-pass contactor. Select the DOL start menu, figure 24. Select DOL start to close the integrated by-pass contactor. Select Stop to open the contactor. This menu is available only if the parameter Setting I_e is equal or lower than the AC-3 rating of the by-pass contactor.

Warning!

The rated motor current must never exceed the AC-3 rating of the integrated by-pass contactor. See Chapter 3 "Description" for details.

Figure 26: Event Log menu

6:2.5 Event Log menu

The Event Log menu is used to check the event log in the softstarter. When entering this menu the 21 latest events in the log are presented, in chronological order with the latest event as No. 1, the second latest as No. 2 etc. The events are presented with "type of event", date and time. Use navigation keys to view all entries in the event log.

6:2.6 Status Information menu

The Status information menu is used to present various information.

The information is presented one by one on the top row. Use navigation keys to present all information. Displayed phase currents L1, L2, and L3 are the delta currents if unit is connected inside delta, otherwise line current.

Display text	Function
Frequency	Measured frequency.
Phase seq.	Phase sequence indication.
Connection	Type of connection, In Line/Inside Delta.
Phase L1	Phase current L1.
Phase L2	Phase current L2.
Phase L3	Phase current L3.
Line Voltage	The incoming line voltage [U].
cosPhi	Power factor.
P kW	Active power [kW].
P hp	Active power [hp]
Q kVAr	Reactive power [kVAr]
S kVA	Apparent power [kVA]
Run Time	Total run time of the motor.
No. Of Starts	Counted number of starts.
SW Ver. CU	Software version CU.
SW Ver. FU	Software version FU.
SW Ver. KP ¹	Software version Ext. keypad.
DB version	Database version
MAC Address	Internal addressing.
LV Board No	Serial No of the LV PCB.

1) only if connected

Figure 27: Reset Events menu

6:2.7 Reset Events menu

The Reset Events menu is entered automatically when a fault has occurred or a protection is activated. It can also be entered via the main menu.

Use navigation keys to view if there are several events to reset.

Chapter 7 Settings and configuration

Settings	77
Overview of all accessible settings (different menus)	
Parameter list	81
Description of menus	85
Top level	85
Application Setting	87
Basic Settings	
Functional Settings	
Start/Stop	
Torque control	
Protections	95
Warnings	101
Faults	102
Inputs	104
Outputs	106
Analog output	108
Fieldbus	110
Sequence start	111
Presentation Settings	114
Service Settings	116
All Settings	116
Changed Settings	117
Reset all Settings	117
Operation mode	118

Chapter 7 Settings and configuration

7:1 Settings

Settings can be done in three different ways:

- Keypad
- · Fieldbus communication
- External keypad (option)

With the keypad, settings can be done as individual parameter setting or selection of predefined parameters for different applications.

The unit has one complete set of parameters but some parameters have extra sets for sequence start. The default parameter set is stored in the unit for a possible reset to default values. When the fieldbus communication is selected, most parameters can also be modified from this interface.

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control)
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

7:1.1	Overview of all accessible settings
	(different menus)

Setting/parameter	Тор	Application	Basic	Functional	Presentation	All	Reset all
	level	Setting	Settings	Settings	Settings	Settings	Settings
Password	Х						
Keypad lock/unlock	Х						
Reset to factory default setting							Х
Application type		Х					
Setting current		Х	Х	Х		Х	
Overload protection class		Х	Х	Х		Х	
External by-pass		Х	Х	Х		Х	
Start mode		Tune Set	Х	Х		Х	
Stop mode		Tune Set	Х	Х		Х	
Start ramp		Tune Set	Х	Х		Х	
Stop ramp		Tune Set	Х	Х		Х	
Initial voltage		Tune Set	Х	Х		Х	
End voltage		Tune Set	Х	Х		Х	
Step down voltage		Tune Set	Х	Х		Х	
Current limit		Tune Set	X	X		X	
Torque limit		Tune Set	X	X		X	
Kick start			~	X		X	
Kick start level				X		X	
Kick start time				×		× ×	
Start ramp range				~ 		∧ V	
Start ramp range				^ 			
				^ 		X	
Tune torque control				X		X	
Overload protection type				X		X	
class				X		X	
Overload protection, dual type, run				Х		Х	
class							
Overload protection, type of opera-				Х		Х	
tion							
Locked rotor protection				Х		Х	
Locked rotor protection level				Х		Х	
Locked rotor protection time				Х		Х	
Locked rotor protection, type of				Х		Х	
operation							
Underload protection				Х		Х	
Underload protection level				Х		Х	
Underload protection time				Х		Х	
Underload protection, type of opera-				Х		Х	
tion							
Phase imbalance protection				Х		Х	
Phase imbalance protection level				Х		Х	
Phase imbalance protection, type of				Х		Х	
High current protection				×		v	
High current protection				^ 		X	
operation				^		~	
Phase reversal protection				Х		Х	
Phase reversal protection. type of				Х		Х	
operation				-		-	
PTC protection				Х		Х	
PTC protection, type of operation	1			Х		Х	
High current warning	1			Х		Х	
High current warning level				Х		Х	

Setting/parameter	Top level	Application Setting	Basic Settings	Functional Settings	Presentation Settings	All Settings	Reset all Settings
Low current warning				Х		Х	
Low current warning level				Х		Х	
Overload warning				Х		Х	
Overload warning level				Х		Х	
Thyristor (SCR) overload warning				Х		Х	
Phase loss fault, type of operation				Х		Х	
Fieldbus fault, type of operation				Х		Х	
Frequency fault, type of operation				X		X	
Heat sink over-temperature fault				X		X	
type of operation						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Thyristor short circuit fault, type of				Х		х	
operation							
By-pass doesn't open fault, type				Х		х	
of operation							
By pass doosn't close fault type				Y		Y	
by-pass doesn't close fault, type				^		^	
						X	
Programmable input In0				X		X	
Programmable input In1				Х		Х	
Programmable output relay K4				X		Х	
Programmable output relay K5				Х		Х	
Programmable output relay K6				Х		Х	
Programmable software output V7				Х		Х	
Event for relay K4				Х		Х	
Event for relay K5				Х		Х	
Event for relay K6				Х		Х	
Event for software output V7				Х		Х	
Analog output				Х		Х	
Analog output, reference				X		X	
Analog output, type of value				X		X	
Analog output, range max				X		X	
Fieldbus control				X		X	
				X		X X	
Fieldbus addross				×		× ×	
Fieldbus auto disable							
				~		^ 	
Sequence start, number of				X		Х	
sequences						V	
Start ramp, first sequence				X		X	
Initial voltage, first sequence				X		X	
Current limit, first sequence				X		Х	
Setting current, first sequence				X		Х	
Start ramp, second sequence				Х		Х	
Initial voltage, second sequence				Х		Х	
Current limit, second sequence				Х		Х	
Setting current, second sequence				Х		Х	
Start ramp, third sequence				Х		Х	
Initial voltage, third sequence				Х		Х	
Current limit, third sequence				Х		Х	
Setting current, third sequence				Х		Х	
Language					Х	Х	
LCD automatic switch-off					Х	Х	
Date type					X	X	
Year					x	X	
Month					x	x	
Day					X	Y Y	
Hour						× ×	
Minutos					~		
winnutes	1	1	1	1	^	^	1

Setting/parameter	Top level	Application Setting	Basic Settings	Functional Settings	Presentation Settings	All Settings	Reset all Settings
Dual current limit time						Х	
Dual current limit level						Х	

Param.	Description	Display text	Setting range	Default value	Actual
	Catting automat	Catting Is	0.0 10074	Individual	Setting
	Setting current	Setting le	9.01207A	Individual	
2	Stan ramp	Start Ramp	1305, 11205	105	
3	Stop ramp	Stop Ramp	030\$, 0120\$	US	
4			3070%	30%	
5	End voltage	End Volt	3070%	30%	
6	Step down voltage	Step down	30100%	100%	
/			2.07.0xie	4.0xie	
8	Kick start	Kick Start	Yes, No	No	
9	Kick start level	Kick Level	50100%	50%	
10	Kick start time	Kick Lime	0.11.5s	0.2s	
11	Start ramp range	Start Range	1-30s, 1-120s	1-30s	
12	Stop ramp range	Stop Range	0-30s, 0-120s	0-30s	
13	Overload protection type	Overload	No, Normal, Dual	Normal	
14	Overload protection class	OL Class	10A, 10, 20, 30	10	
15	Overload class, dual type, start class	OL Class S	10A, 10, 20, 30	10	
16	Overload class, dual type, run class	OL Class R	10A, 10, 20, 30	10	
17	Overload protection, type of operation	OL Op	Stop-M, Stop-A, Ind	Stop-M	
18	Locked rotor protection	Locked Rotor	Yes, No	No	
19	Locked rotor protection level	Lock R Lev	0.58.0xle	4.0xle	
20	Locked rotor protection time	Lock R Time	0.210s	1.0s	
21	Locked rotor protection, type of operation	Lock R Op	Stop-M, Stop-A, Ind	Stop-M	
22	Underload protection	Underload	Yes, No	No	
23	Underload protection level	Underl Lev	0.40.8xle	0.5xle	
24	Underload protection time	Underl Time	130s	10s	
25	Underload protection, type of operation	Underl Op	Stop-M, Stop-A, Ind	Stop-M	
26	Phase imbalance protection	Phase Imb	Yes, No	No	
27	Phase imbalance protection level	Ph Imb Lev	1080%	80%	
28	Phase imbalance protection, type of opera-	Ph Imb Op	Stop-M, Stop-A, Ind	Stop-M	
	tion				
29	High current protection	High I	Yes, No	No	
30	High current protection, type of operation	High I Op	Stop-M, Stop-A, Ind	Stop-M	
31	Phase reversal protection	Phase Rev	Yes, No	No	
32	Phase reversal protection, type of operation	Ph Rev Op	Stop-M, Stop-A, Ind	Stop-M	
33	PTC protection	PTC	Yes, No	No	
34	PTC protection, type of operation	PTC Op	Stop-M, Stop-A, Ind	Stop-M	
35	External by-pass	Ext ByPass	Yes, No	No	
37	High current warning	Warn I=High	Yes, No	No	
38	High current warning level	Wa I=H Lev	0.55.0xle	1.2xle	
39	Low current warning	Warn I=Low	Yes, No	No	
40	Low current warning level	Wa I=L Lev	0.41.0xle	0.8xle	
41	Overload warning	Warn OL	Yes, No	No	
42	Overload warning level	Wa OL Lev	4099%	90%	
43	Thyristor (SRC) overload warning	Warn SCR OL	Yes, No	No	
44	Phase loss fault, type of operation	Ph Loss Op	Stop- M, Stop-A	Stop-M	
45	Fieldbus fault, type of operation	FB Fault Op	Stop- M, Stop-A	Stop-M	
46	Frequency fault, type of operation	Freq F Op	Stop- M, Stop-A	Stop-M	
47	Heat sink over-temperature fault, type of	HS Temp Op	Stop- M, Stop-A	Stop-M	
19	Uperation Thyristor short circuit foult type of operation		Stop M Stop A	Stop M	
40	Eupotion of programmable input In0	SUR SU UP	Slop- IVI, Slop-A		
49		IIIU	Jog, DOL, Start 2, FB- Dis	resel	

7:1.2 Parameter list

Param.	Description	Display text	Setting range	Default	Actual
number				value	setting
50	Function of programmable input In1	In1	None, Reset, Enable Jog, DOL, Start 3, FB- Dis	Reset	
51	Function of programmable output relay K4	Relay K4	Run, TOR, Event	Run	
52	Function of programmable output relay K5	Relay K5	Run, TOR, Event	TOR	
53	Function of programmable output relay K6	Relay K6	Run, TOR, Event	Event	
54	Function of programmable software relay V7	SW Outp V7	Run, TOR, Event	Event	
55(0)	Overload event of relay K4	K4 Overload	Yes, No	No	
55(1)	Fault event of relay K4	K4 Fault	Yes, No	No	
55(2)	High current event of relay K4	K4 High I	Yes, No	No	
55(3)	Thyristor overload event of relay K4	K4 SCR OL	Yes, No	No	
55(4)	Locked rotor event of relay K4	K4 Lock Rot	Yes, No	No	
55(5)	Underload event of relay K4	K4 Underload	Yes, No	No	
55(6)	Phase imbalance event of relay K4	K4 Phase Imb	Yes, No	No	
55(7)	PTC event of relay K4	K4 PTC	Yes, No	No	
55(8)	Phase reversal event of relay K4	K4 Phase Rev	Yes, No	No	
55(9)	Overload warning event of relay K4	K4 Warn OL	Yes, No	No	
55(10)	Thyristor overload warning event of relay K4	K4 Wa SCR OL	Yes, No	No	
55(11)	High current warning event of relay K4	K4 Wa I=High	Yes, No	No	
55(12)	Low current warning event of relay K4	K4 Wa I=Low	Yes, No	No	
55(13)	Shunt fault event of relay K4	K4 Shunt Fault	Yes, No	No	
56(0)	Overload event of relay K5	K5 Overload	Yes, No	No	
56(1)	Fault event of relay K5	K5 Fault	Yes, No	No	
56(2)	High current event of relay K5	K5 High I	Yes, No	No	
56(3)	Thyristor overload event of relay K5	K5 SCR OL	Yes, No	No	
56(4)	Locked rotor event of relay K5	K5 Lock Rot	Yes, No	No	
56(5)	Underload event of relay K5	K5 Underload	Yes, No	No	
56(6)	Phase imbalance event of relay K5	K5 Phase Imb	Yes, No	No	
56(7)	PTC event of relay K5	K5 PTC	Yes, No	No	
56(8)	Phase reversal event of relay K5	K5 Phase Rev	Yes, No	No	
56(9)	Overload warning event of relay K5	K5 Warn OL	Yes, No	No	
56(10)	Thyristor overload warning event of relay K5	K5 Wa SCR OL	Yes, No	No	
56(11)	High current warning event of relay K5	K5 Wa I=High	Yes, No	No	
56(12)	Low current warning event of relay K5	K5 Wa I=Low	Yes, No	No	
56(13)	Shunt fault event of relay K5	K5 Shunt Fault	Yes, No	No	
57(0)	Overload event of relay K6	K6 Overload	Yes, No	Yes	
57(1)	Fault event of relay K6	K6 Fault	Yes, No	Yes	
57(2)	High current event of relay K6	K6 High I	Yes, No	Yes	
57(3)	Thyristor overload event of relay K6	K6 SCR OL	Yes, No	No	
57(4)	Locked rotor event of relay K6	K6 Lock Rot	Yes, No	No	
57(5)	Underload event of relay K6	K6 Underload	Yes, No	No	
57(6)	Phase imbalance event of relay K6	K6 Phase Imb	Yes, No	No	
57(7)	PTC event of relay K6	K6 PTC	Yes, No	No	
57(8)	Phase reversal event of relay K6	K6 Phase Rev	Yes, No	No	
57(9)	Overload warning event of relay K6	K6 Warn OL	Yes, No	No	
57(10)	Thyristor overload warning event of relay K6	K6 Wa SCR OL	Yes, No	No	
57(11)	High current warning event of relay K6	K6 Wa I=High	Yes, No	No	
57(12)	Low current warning event of relay K6	K6 Wa I=Low	Yes, No	No	
57(13)	Shunt fault event of relay K6	K6 Shunt Fault	Yes, No	Yes	
58(0)	Overload event of relay V7	V7 Overload	Yes, No	Yes	
58(1)	Fault event of relay V7	V7 Fault	Yes, No	Yes	
58(2)	High current event of relay V7	V7 High I	Yes, No	Yes	
58(3)	Thyristor overload event of relay V7	V7 SCR OL	Yes, No	No	

Param.	Description	Display text	Setting range	Default	Actual
number				value	setting
58(4)	Locked rotor event of relay V7	V7 Lock Rot	Yes, No	No	
58(5)	Underload event of relay V7	V7 Underload	Yes, No	No	
58(6)	Phase imbalance event of relay V7	V7 Phase Imb	Yes, No	No	
58(7)	PTC event of relay V7	V7 PTC	Yes, No	No	
58(8)	Phase reversal event of relay V7	V7 Phase Rev	Yes, No	No	
58(9)	Overload warning event of relay V7	V7 Warn OL	Yes, No	No	
58(10)	Thyristor overload warning event of relay V7	V7 Wa SCR OL	Yes, No	No	
58(11)	High current warning event of relay V7	V7 Wa I=High	Yes, No	No	
58(12)	Low current warning event of relay V7	V7 Wa I=Low	Yes, No	No	
58(13)	Shunt fault event of relay K7	K7 Shunt Fault	Yes, No	Yes	
59	Fieldbus control	Fieldb Ctrl	Yes, No	No	
60	Fieldbus type	Fieldb Type	AS-Int, Other	Other	
61	Fieldbus address	Fieldb Addr	01000	0	
62	Sequence start, number of sequences	No of Seq	No, 2, 3	No	
63	Start ramp, first sequence	Start Ramp 1	130s, 1120s	10s	
64	Initial voltage, first sequence	Init Volt 1	3070%	30%	
65	Current limit, first sequence	Curr Lim 1	2.07.0xle	4.0xle	
66	Setting current, first sequence	1st Set le	9.01207A	Individual	
67	Start ramp, second sequence	Start Ramp 2	130s, 1120s	10s	
68	Initial voltage, second sequence	Init Volt 2	3070%	30%	
69	Current limit, second sequence	Curr Lim 2	2.07.0xle	4.0xle	
70	Setting current, second sequence	2st Set le	9.01207A	Individual	
71	Start ramp, third sequence	Start Ramp 3	130s, 1120s	10s	
72	Initial voltage, third sequence	Init Volt 3	3070%	30%	
73	Current limit, third sequence	Curr Lim 3	2.07.0xle	4.0xle	
74	Setting current, third sequence	3st Set le	9.01207A	Individual	
75	Language	Language	US/UK, PL, TR, RU, CN, DE, ES, FR, IT, NL, PT, SF, FI	Individual	
77	LCD automatic switch-off	LCD Auto Off	1255min	15min	
78	Password	Password	0255	0	
79	Date type	Date Type	ISO, CE, US	ISO	
80	Year	Date Year	19012038	Individual	
81	Month	Date Month	112	Individual	
82	Dav	Date Dav	131	Individual	
83	Hour	Time Hour	023	Individual	
84	Minutes	Time Min	059	Individual	
97	By-pass doesn't open fault, type of opera- tion	BP Closed Op	Stop-M, Stop-A	Stop-M	
98	By-pass doesn't close fault, type of opera- tion	BP Open Op	Stop-M, Stop-A	Stop-M	
111	Dual current limit time	C Lim Y Time	0120 s	0 s	
112	Dual current limit level	C Lim Y Level	2.07.0 x le	4.0 x le	
113	Fieldbus auto disable	FB Auto Dis	Yes, No	No	
114	Start mode	Start Mode	Volt, Torque	Volt	
115	Stop mode	Stop Mode	Volt, Torque	Volt	
116	Torque limit	Torque Limit	20200%	150%	
117	Tune torque control	Tune T-Ctrl	30300%	100%	
123	Analog output	Analog Out	Yes, No	No	
124	Analog output, reference	Anl Ref	010V, 020mA, 420mA	420mA	
125	Analog output, type of value	Anl Type	I Amp, U Volt, P kW, P hp, Q kVAr, S kVA, Tmp- Mot, TmpSCR, cosPhi	I Amp	
126	Analog output, current range max	I Range Max	1020000A	PST(B) size dependent	

Chapter 7 Settings and configuration

Param. number	Description	Display text	Setting range	Default value	Actual setting
127	Analog output, voltage range max	U Range Max	101000V	600V	
128	Analog output, active power range max kW	kW Range Max	13000kW	PST(B) size dependent	
129	Analog output, active power range max hp	hp Range Max	14000hp	PST(B) size dependent	
130	Analog output, reactive power range max	Q Range Max	13000kVAr	PST(B) size dependent	
131	Analog output, apparent power range max	S Range Max	13000kVA	PST(B) size dependent	

7:2 Description of menus

For detailed description of each function, see Chapter 10 "Functions".

7:2.1 Top level

This level contains information about output voltage and current, heat sink temperature, real time clock and more. From this menu, the keypad can be locked/unlocked and a password for this can be set. It is also possible to enter the other menus.

Figure 1: Top level display loop

‡U= 0%	I=0.0A
Menu	

Figure 2: Top level (start position)

‡Uin	OK
	Back

Figure 3: U_{in} status

‡Motor Temp.	0%
	Back

Figure 4: Motor temperature

Figure 5: SCR temperature

Display at start up

When switching on the supply voltage the LCD will first display the text "Hello", and after a few seconds switch into displaying Top Level, figure 2. The displayed current is the actual motor current.

U_{in} status

The softstarter checks and displays the status of the input voltage (line side).

Motor temperature

The used thermal capacity of the motor is displayed. 0% means that the motor is in cold state. 50% means that half the capacity is used etc.

SCR temperature

The temperature of the SCRs in the softstarter is displayed as a percentage of the max. value.

‡ Start Mode	Volt
	Back

Figure 6: Start mode

‡Stop Mode	Torque
	Back

Figure 7: Stop mode

‡In= 0000	Out= 0000
	Back

Figure 8: Input/outputs

‡2003-02-05	10:33
	Back

Figure 9: Real time clock

‡Keypad is	Active
	Back

Figure 10: Keypad status

‡Change Password Select Back

Figure 11: Change Password

Start mode

The start mode of the motor is displayed. The possible options are:

- Volt
- Torque

Stop mode

The stop mode of the motor is displayed. The possible options are:

- Volt
- Torque

Status of inputs/outputs

The status of the Programmable inputs and outputs is displayed with "0" for not activated or "1" for activated. The figures have following function:

In=0100	Start signal high
In=1000	Stop signal high
In=0010	In0 high
In=0001	In1 high
Out=1000	Relay K4 activated
Out=0100	Relay K5 activated
Out=0010	Relay K6 activated
Out=0001	SW V7 activated

Real time clock

The real time clock shows present date and time. How to set date, time and display type see "Presentation Settings".

Keypad status

Information on whether the keypad is locked or unlocked. How to operate, see Chapter 6 "Human-Machine Interface (HMI)".

Change Password

Menu for changing the password. How to operate, see Chapter 6 "Human-Machine Interface (HMI)" .

7:2.2 Application Setting

The Application setting menu consists of predefined parameters for the selected application and should be used if an easy and quick set-up is required. Only a few parameters have to be set before start of the motor is possible. All necessary input data will show up in an automatic loop.

Figure 12: Application Setting menu

‡Application	Setting
Select	Back

Figure 13: Application Setting menu

‡Centrifugal	Pump
Store Set	Back

Figure 14: Application type

Centrifugal Pump Next Back

Figure 15: Confirming Application type

After selecting an application and performing the desired tuning, the application should not be selected again. If this is done, all the tuning will be reset to the default settings for the selected application.

Enter the Application setting

Enter the menu by selecting Application Setting.

Select what type of application the softstarter is used for by pressing *Store Set*. If the used application is not listed, select the one closest and choose *Tune Set* (see below). Possible applications are:

- Centrifugal Pump
- Hydraulic Pump
- Centrifugal Fan
- Axial Fan
- Compressor
- Conveyor
- Crusher
- Mixer
- Bow Thruster

Confirm the selected application by pressing *Next*. If wrong application type was selected, press *Back* and select the correct type.

Setting	le	100A ‡
Store		

Figure 16: Setting Ie menu

Setting le	100A
Next	Back

Figure 17: Confirming Setting Ie

OL Class	10	\$
Store		

Figure 18: Overload class

OL Class	10
Next	Back

Figure 19: Confirming OL Class

Ext ByPass	Yes ‡
Store	

Figure 20: External ByPass

Ext ByPass	Yes
Next	Back

Figure 21: Confirming Ext ByPass

Readv?	
Yes	Tune Set

Figure 22: Ready?/Tune Set menu

Setting I_e

Set the current that the softstarter will be exposed to i.e. rated motor current if the unit is connected In Line.

For units connected Inside Delta the Setting I_e must be set according to the current in the delta circuit = $58\% (1/(\sqrt{3}))$ of the rated motor current.

Press Store to save the data after setting the current.

Confirm the Setting I_e by pressing Next. If wrong Setting I_e was set, press Back and set the correct value.

Overload class (OL Class)

Select the class for the overload relay for the used application type. Available classes:

- 10A
- 10
- 20
- 30

Press Store to save the selected class.

Confirm the selected overload class by pressing *Next*. If wrong overload class was selected, press *Back* and select the correct class.

External By-Pass contactor (Ext ByPass)

If an external by-pass contactor is used, set the parameter to *Yes*, otherwise *No*.

Press Store to save the data.

Confirm the selection of external by-pass by pressing *Next*. If wrong selection was made, press *Back* and correct the selection.

Tune Set

The configuration of the application setting menu is now completed. If no tuning of the settings is wanted, it is possible to return to the top level by pressing Yes. If tuning of some main parameters is wanted, select *Tune Set*.

Tuning parameters

Nine parameters can be tuned individually if a more specific adjustment is required. Each parameter is described in Chapter 10 "Functions" .

- · Start mode
- Stop mode
- · Start ramp
- Stop ramp
- · Initial voltage
- · End voltage
- Step down voltage (Not available if Stop mode is set to Torque)
- Current limit level
- Torque limit (Not available is Start mode is set to Volt)

When all tuning parameters have been passed, following information will be displayed, figure 23. Select Yes if all necessary parameters are tuned. If a new tuning is required select *Back* and follow the step *Tune Set* above.

‡Ready?	
Yes	Back

Figure 23: All tuning parameters have been passed

Figure 24: Basic Settings menu

7:2.3 Basic Settings

The Basic settings menu consists of the most common start/ stop parameters required for the set-up. Each parameter can be adjusted separately. For a deep description of each parameter, see Chapter 10 "Functions" .

Enter the Basic settings

Enter the menu by selecting Basic Settings.

Setting I_e

Set the current that the softstarter will be exposed to i.e. rated motor current, if the unit is connected In Line.

For units connected Inside Delta the Setting I_e must be set according to the current in the delta circuit = 58% ($1/(\sqrt{3})$) of the rated motor current.

Press Store to save the data after setting the current.

External By-Pass contactor (Ext ByPass)

Set the parameter to *Yes* if an external by-pass contactor is used, or else *No*. This parameter is not available on PSTB370...1050 since these have an integrated by-pass contactor.

Press Store to save the data.

Start mode

Select the type of ramp that will be used during start. The possible options are:

- Volt
- Torque

Press Store to save the data after setting the start ramp type.

Stop mode

Select the type of ramp that will be used during stop. The possible options are:

- Volt
- Torque

Press Store to save the data after setting the stop ramp type.

Start ramp

Set the ramp time for start.

Press Store to save the time for the start ramp.

Stop ramp

Set the ramp time for stop (softstop). Note that this function shall only be used for applications with small flywheel masses, for example pumps and conveyors (in case fragile material is transported).

Press Store to save the time for the stop ramp.

Initial voltage (Init Volt)

Set the initial voltage level.

Press Store to save the initial voltage.

End voltage (End Volt)

Set the end voltage level.

Press Store to save the end voltage.

Step down

Set the level of the step down voltage. This function is only working if softstop is selected and stop mode is set to volt.

Press Store to save the step down level.

Current limit (Current Lim)

Set the current limit level for the start.

Press Store to save the current limit.

Torque limit (Torque Lim)

Select the torque limit as percentage of the calculated nominal torque. This parameter is not available if start mode is set to volt.

Press Store to save the data after setting the torque limit.

Overload Class (OL Class)

Select the class for the overload protection.

Press Store to save the overload class.

The configuration of the basic setting menu is now completed. It is possible to return to the top level by pressing *Back* 3 times.

7:2.4 Functional Settings

The Functional setting menu consists of groups with parameters arranged by function such as protection, warning, fault, fieldbus communication etc. This menu should be used if a more advanced set-up is required. For a detailed description of each parameter, see Chapter 10 "Functions".

Enter the Functional settings

Enter the menu by selecting Functional Settings.

Figure 25: Functional Settings menu

7:2.4.1 Start/Stop

To set parameters related to start and stop, enter the *Start/ Stop* group. Following parameters are available in this group:

Setting of parameters from Setting ${\rm I}_{\rm e}$ to Torque limit above, see "Basic Settings" .

Kick Start

Activate the *Kick Start* function by entering this menu. Press *Store* to save the selection.

Kick Level

Set the required level of the Kick Start. Press *Store* to save the data.

This menu will only be visual if Kick Start is activated.

Kick Time

Set the required time for the kick start. Press *Store* to save the data.

This menu will only be visual if Kick Start is activated.

Start Range

The ramp time for start can be set between 1 and 30 seconds as default. If required, the range can be extended up to 120 seconds by entering this menu. Press *Store* to save the data.

Stop Range

The ramp time for stop can be set between 0 and 30 seconds as default. If required, the range can be extended up to 120 seconds by entering this menu. Press *Store* to save the data.

The configuration of the parameters in the Start/Stop group is now completed. It is possible to return to top level by pressing Back three times. To configure the protection, proceed to that menu.

Figure 27: Torque control group

the torque ramps. This parameter should usually be set to its default value 100%.

Press Store to save the selected level.

Torque limit

Select the torque limit of the softstarter.

Press Store to save the selected torque limit level.

7:2.4.3 Protections

Settings

Figure 28: Protections group

To set parameters related to the protections, enter the Protections group.

Caution!

The motor may start unexpectedly if there is a start signal present when the softstarter has tripped for a protection and a reset is performed. This reset can be either manual (Stop-M) or automatic (Stop-A)

Overload protection (Overload)

Select the required overload type for the application. Following selections are available:

- No
- Normal
- Dual

Press Store to save the selected type.

If overload "Normal" is selected, the following settings will be available:

Overload class (OL Class)

Select the class for the overload relay. Following classes are available:

- 10A
- 10
- 20
- 30

Press Store to save the selected class.

Overload type of operation (OL Op)

Select what operation shall be asserted if the overload relay is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

If overload "Dual" is selected, the following settings will be available:

Overload start class (OL Class S)

Select the required class for overload relay during start condition. Following classes are available:

- 10A
- 10
- 20
- 30

Press Store to save the selected class.

Overload run class (OL Class R)

Select the required class for overload relay during continuous run. Following classes are available:

- 10A
- 10
- 20
- 30

Press Store to save the selected class.

Locked rotor protection (Locked Rotor)

Activate the protection if required by changing to Yes.

If "Yes" is selected, the following settings will be available:

Locked rotor level (Lock R Lev)

Set the level of the locked rotor protection. Available only if the protection is selected.

Locked rotor time (Lock R Time)

Set the time for the locked rotor protection. Available only if the protection is selected.

Locked rotor type of operation (Lock R Op)

Select what operation shall be asserted if the locked rotor protection is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

Underload protection (Underload)

Activate the protection if required by changing to Yes.

If "Yes" is selected, the following settings will be available:

Underload level (Underl Lev)

Set the level of the underload protection. Available only if the protection is selected.

Underload time (Underl Time)

Set the time for the underload protection. Available only if the protection is selected.

Underload type of operation (Underl Op)

Select what operation shall be asserted if the underload protection is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

Phase imbalance protection (Phase Imb)

Activate the protection if required by changing to Yes.

If "Yes" is selected, the following settings will be available:

Phase imbalance level (Ph Imb Lev)

Set the level of the phase imbalance protection. Available only if the protection is selected.

Phase imbalance type of operation (Ph Imb Op)

Select what operation shall be asserted if the phase imbalance protection is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

Press Store to save the selected operation.

High current protection (High I)

Activate the high current protection if required by changing to Yes.

If "Yes" is selected, the following setting will be available:

High current type of operation (High I Op)

Select what operation shall be asserted if the high current protection is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

Phase reversal protection (Phase Rev)

Activate the phase reversal protection if required by changing to Yes.

If "Yes" is selected, the following setting will be available:

Phase reversal type of operation (Ph Rev Op)

Select what operation shall be asserted if the phase reversal protection is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

Press Store to save the selected operation.

PTC protection (PTC)

Activate the PTC protection if required by changing to Yes.

Since the PTC protection uses the same terminals as the analog output, it is not possible to use both of these functions at the same time. If the analog output is enabled when activating the PTC protection, the question "Turn off anl Output?" will be prompted. Answer Yes to activate PTC protection and disable the analog output.

If "Yes" is selected, the following setting will be available:

PTC type of operation (PTC Op)

Select what operation shall be asserted if the PTC protection is activated:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and automatic reset is performed.
- Ind Only indication will be given.

Press Store to save the selected operation.

Thyristor overload protection

Selected operation for thyristor overload protection is always:

Stop–M The motor will stop and a manual reset is required.

7:2.4.4 Warnings

Set the level of the overload warning. Available only if the function is selected. Press *Store* to save the selected operation.

Press Store to save the selected operation.

Overload warning level (Wa OL Lev)

Press Store to save the selected operation.

Overload warning (Warn OL)

Thyristor overload warning (Warn SCR OL)

Activate the warning function if required by changing to Yes. Press *Store* to save the selected operation.

Activate the warning function if required by changing to Yes.

Select what operation shall be asserted if a fieldbus communication fault occurs:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and an automatic reset is performed.

Press Store to save the selected operation.

Frequency fault, type of operation (Freq F Op)

Select what operation shall be asserted if the frequency fault occurs (out of range):

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and an automatic reset is performed.

Press Store to save the selected operation.

Heat sink over-temperature fault, type of operation (HS Temp Op)

Select what operation shall be asserted if an overtemperature occurs:

Stop–M The motor will stop and a manual reset is required.

Stop–A The motor will stop and an automatic reset is performed.

Press Store to save the selected operation.

Thyristor short circuit fault, type of operation (SCR SC Op)

Select what operation shall be asserted if a fault occurs with shorted thyristor:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and an automatic reset is performed.

Press Store to save the selected operation.

By-pass doesn't open, type of operation (BP Closed Op)

Select what operation shall be asserted if the contactor does not open:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and an automatic reset is performed.

Press Store to save the selected operation.

By-pass doesn't close, type of operation (BP Open Op)

Select what operation shall be asserted if the contactor does not close:

- Stop–M The motor will stop and a manual reset is required.
- Stop–A The motor will stop and an automatic reset is performed.

Press Store to save the selected operation.

Connection fault, Non conduction thyristor fault, Line side fault, Kick-current fault, and Internal fault

Selected operation for the faults listed above is always:

Stop-M The motor will stop and a manual reset is required.

Start2 Start signal for 2nd parameter set-up.

FB-Dis Disable of the fieldbus communication. The softstarter can be controlled by the hard wire inputs instead.

Press Store to save/activate the selected function.

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control)
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

Second programmable input (In1)

Select the required function for the input In1. One of the following functions can be selected:

- None No specific function (not activated).
- Reset Reset of an event.
- Enable When the In1=0 the softstarter stops immediately. When In1=1 the softstarter is in normal operation. Overrides all other inputs, except LOCAL CONTROL.
- Jog Performs a start ramp until command is released, then the motor stops immediately.
- DOL Open/close of the by-pass contactor (PSTB370...PSTB1050). Only if *Setting I_e* is equal or lower than AC-3 rating.
- Start3 Start signal for 3rd parameter set-up.
- FB-Dis Disable of the fieldbus communication. The softstarter can be controlled by the hard wire inputs instead.

Press Store to save/activate the selected function.

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control)
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

· Phase reversal protection

- · Overload warning
- Thyristor overload warning
- High current warning
- · Low current warning
- Shunt Fault

Press Store to save/activate the selected function.

Output relay K5 (Relay K5)

Select the required function for the output relay K5. One of the following functions can be selected:

- Run Run indication.
- TOR Top of ramp indication.
- Event Indication of selected event(s), see relay K4.

Press Store to save/activate the selected function.

Output relay K6 (Relay K6)

Select the required function for the output relay K6. One of the following functions can be selected:

Run	Run indication.
TOR	Top of ramp indication.
Event	Indication of selected event(s), see relay K4.
Press Store	to save/activate the selected function.

Software output V7 (SW Outp V7)

Select the required function for the fieldbus communication output SW Outp V7. One of the following functions can be selected:

- Run Run indication.
- TOR Top of ramp indication.
- Event Indication of selected event(s), see relay K4.

Press Store to save/activate the selected function.

Settings

7:2.4.8 Analog output

To set parameters related to the analog output, enter the Analog output group.

Analog output (Analog Out)

Activate the analog output by changing to Yes.

Since the analog output uses the same terminals as the PTC protection, it is not possible to use both of these functions at the same time. If the PTC protection is enabled when activating the analog output, the question "Turn off PTC?" will be prompted. Answer Yes to activate the analog output and disable the PTC protection.

When sequence start is used, the analog output is only active for the last started motor.

Analog output, reference

With this parameter it is possible to set the unit and the range of the signal to output. This selected range will be the physical output from the softstarter. This range should be selected to suit the analog meter or the PLC that uses this signal as its input. The possible options are:

- 0-10 V
- 0-20 mA
- 4-20 mA

Press Store to save the type of signal.

If for instance 4-20 mA is selected, then this range will represent 0-100% of the output signal, for instance the current of the motor.

Analog output, type of value (Anl Type)

Select which type of value to output. The possible options are:
- Current of the motor (I Amp)
- · Main voltage (U Volt)
- Active power kW (P kW)
- Active power hp (P hp)
- Reactive power (Q kVAr)
- Apparent power (S kVA)
- Calculated temperature of the motor (TmpMot)
- Calculated temperature of the SCR (TmpSCR)
- Power factor (cosPhi)

Press Store to save the type of value to output.

Analog output, range (I/U/kW/hp/Q/S Range Max)

With this parameter it is possible to set the value that will be represented as the maximum value by an analog meter or by a PLC. If for instance this parameter is set to 20000A, then 0-20000A will be represented by 0-100% by a PLC or an analog meter.

If the actual value happens to be greater than the selected maximum value then the actual value will still only be represented as the selected maximum value. This can be useful if for instance very large currents occur during start and only the currents during continuous run are of interest.

The possible range and the unit depend on which type of output is selected. The range for the different output types are listed below:

Current of the motor	I Range Max	1020000 A
Main voltage	U Range Max	101000 V
Active power kW	kW Range Max	13000 kW
Active power hp	hp Range Max	14000 hp
Reactive power	Q Range Max	13000 kVAr
Apparent power	S Range Max	13000 kVA

Only the valid parameter is displayed. If for instance I Amp is selected as output type, then only I Range Max will appear. If TmpMot, TmpSCR, or cosPhi is selected as output type, this range parameter will not appear at all. When selecting TmpMot or TmpSCR the range will always be 0-100% and when selecting cosPhi the range will be 0-1.

Press Store to save the range of output.

Press Store to save the selected function.

Fieldbus auto disable (FB Auto Dis)

Select whether fieldbus auto disable should be activated or not.

Press Store to save the selected function.

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control). Remember that when Fieldbus auto disable is active, this switch can be done automatically.
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

Settings

- Functional Settings - Start/Stop

Figure 35: Sequence start group

7:2.4.10 Sequence start

The sequence start function can be used for starting several motors or multiple speed motors with different parameter sets such as individual ramp times, initial voltages, current limits etc.

Up to three individual parameter sets can be used simultaneously.

The LOCAL CONTROL menu can not be entered if Sequence start is selected.

Number of sequences (No of Seq)

To set parameters related to a sequence start, enter the Seq Start group.

Select the required number of parameter sets for the application.

The following selections are available:

- No Sequence start is not activated. The softstarter is in normal operation.
- 2 Two different parameter sets will be used.
- 3 Three different parameter sets will be used.

Press Store to save/activate the selected function.

First sequence setting current (1st Set le)

Set the current for the first parameter group and press *Store* to save the value. This parameter will only be displayed if parameter

No of Seq is set to 2 or 3.

Second sequence setting current (2nd Set le)

Set the current for the second parameter group. Press *Store* to save the value. This parameter will only be displayed if parameter *No of Seq* is set to 2 or 3.

If sequence start was used and the parameter No of Seq is changed to No, the overload protection will automatically be set to Normal independent of earlier setting.

Third sequence setting current (3rd Set le)

Set the current for the third parameter group. Press *Store* to save the value.

This parameter will only be displayed if parameter *No of Seq* is set to 3.

Function of first programmable input (In0)

This parameter will automatically be set as Start2.

Function of second programmable input (In1)

This parameter will automatically be set as Start3.

Overload

The overload protection is not activated when sequence start is selected.

To activate the motor overload protection enter this group and change to required function.

The overload protection can normally not be used when starting several motors since the total starting time will become too long and the protection will trip.

First sequence parameters (1st Seq .Param.)

To set parameters related to the first sequence, enter the 1st Seq. Param. group. Following parameters can be adjusted:

1st Set le	Setting current.
Start Ramp1	Ramp time for start
Init Volt1	Initial voltage.
Curr Lim1	Current limit level.
Press Store t	o save the selected parameter.

Second sequence parameters (2nd Seq .Param.)

To set parameters related to the second sequence, enter the 2nd Seq. Param. group. Following parameters can be adjusted:

2nd Set le Setting current.

Start Ramp2 Ramp time for start.

Init Volt2 Initial voltage.

Curr Lim2 Current limit.

Press Store to save the selected parameter.

Third sequence parameters (3rd Seq .Param.)

To set parameters related to the third sequence, enter the 3rd Seq. Param. group. Following parameters can be adjusted:

3rd Set le Setting current.

Start Ramp3 Ramp time for start.

Init Volt3 Initial voltage.

Curr Lim3 Current limit.

Press Store to save the selected parameter.

For wiring and operation of the start/stop signals, see Chapter 5 "Connection" under programmable inputs.

Figure 36: Presentation Settings menu

7:2.5 Presentation Settings

The Presentation setting menu consists of parameters for the LCD set-up. The presentation language can be chosen among 13 different languages. The real-time clock for the softstarter can be set in this menu.

Enter the Presentation settings

Enter the menu by selecting Presentation Set.

Presentation language

To set the wanted presentation language on the LCD, press *Change* and *Store* the selected language. Country codes are based on ISO 3166. Available languages are:

Language	Abbreviation in LCD
English	US/UK
Polish	PL
Turkish	TR
Russian	RU
Chinese	CN
German	DE
Spanish	ES
French	FR
Italian	IT
Dutch	NL
Portuguese	PT
Swedish	SE
Finnish	FI

In case wrong language (not understandable) is selected, follow the "emergency instructions" below to reach this parameter (start from top level):

Press left selection key twice. Press lower navigation key three times. Press left selection key twice. Use the navigation keys to find the required language abbreviation. Press left selection key to save the parameter.

LCD Auto Off

The LCD will be switched off automatically by a pre-set time between 1 - 255 minutes. If the display has switched off, a touch on any of the keys will switch it on again.

Date Type

The date can be presented in three different ways. Depending on the selected type, the following will be displayed at top level:

Date type	Display on the LCD
ISO	Year – Month – Day
US	Month – Day - Year
CE	Day – Month - Year

Date Year

To set the year in the real time clock, press *Change* to enter the setting level. Press *Store* to save the set value.

Date Month

To set the month in the real time clock, press *Change* to enter the setting level. Press *Store* to save the set value.

Date Day

To set the day in the real time clock, press *Change* to enter the setting level. Press *Store* to save the set value.

Time Hour

To set the hours in the real time clock, press *Change* to enter the setting level. Press *Store* to save the set value.

Time Min

To set the minutes in the real time clock, press *Change* to enter the setting level. Press *Store* to save the set value.

The configuration of the presentation setting menu is now completed. It is possible to return to the top level by pressing *Back* 3 times.

Figure 37: Service Settings menu (for authorized personnel only)

7:2.7 All Settings

The All setting menu consists of all the available settings listed. Each parameter can be adjusted separately from this menu. For a detailed description of each parameter, see Chapter 10 "Functions" .

Enter the All settings

Enter the menu by selecting *All Settings*.

Figure 38: All Settings menu

7:2.6 Service Settings

The service setting menu consists of parameters used for maintenance and repair. This menu shall never be used by anybody but authorized service personnel.

Warning!

If parameters are changed the consequences can be malfunction but also damage to the softstarter and the warranty may not be valid any longer.

7:2.7.1 Changed Settings

The Changed settings menu consists of the parameters that have been changed in contrast to the factory default setting. If no parameters have been changed, the LCD will display No Changed Settings.

Figure 39: Changed Settings menu

7:2.7.2 Reset all Settings

Confirmation of reset will be displayed as *Done* on the LCD.

The real time clock, the hour run meter, the number of starts

- Reset all Settings (programmable input set to Enable)

Figure 40: Reset all Settings menu

Figure 41: Reset all Settings menu

‡Operation	Mode
Select	Back

Figure 42: Display appearance in normal mode

‡Operation	Mode
Select	Back

Figure 43: Display appearance in demo mode

7:2.7.3 Operation mode

The Operation mode makes it possible to switch between two different modes in the softstarter, a demo mode and the regular operation mode. By entering the demo mode, programmable inputs/outputs, start and stop circuits, by-pass contactor etc. can be tested before the unit is taken into operation. As long as the unit is in demo mode, the color on the display is inverted (not on external keypad).

Never enter the demo mode with the main voltage connected. The by-pass contactor will close at TOR and may start the motor.

The total run time of the motor and the total number of starts will be counted also during demo mode. When exit demo mode these values will be reset to previous value. Parameters changed and the Event Log will be kept when exit demo mode.

Chapter 8 Fieldbus communication (option)

)verview 1	121
Required accessories1	121
Instructions 1	122

Chapter 8 Fieldbus communication (option)

8:1 Overview

The PST softstarter has an interface on the front for connecting the ABB fieldbus plug used for fieldbus communication. Through this interface it is possible to control the softstarter, achieve status information, as well as up and down-load of parameters.

The interface between the softstarter and the fieldbus plug is always the same. Independent of softstarter size or delivery date it is possible to connect any fieldbus protocol later on since this is defined in the fieldbus plug itself.

Following fieldbus protocols are available

- AS-Interface
- DeviceNet
- Profibus DP
- Modbus

SFC132067F0001

8:1.1 Required accessories

To connect the softstarter to a fieldbus system, following accessories are required:

- Fieldbusplug for present fieldbus protocol (check that the cable length is sufficient).
- Connectors for bus connection.
- End plug (some protocols).
- Software for PLC set-up.

Figure 1: Principle of a fieldbus network with PST softstarters connected

8:1.2 Instructions

To do the set-up of input/output telegrams, parameter settings etc. following instructions are available at *www.abb.com/lowvoltage*:

- DeviceNet 1SFC132045M0201
 - Profibus DP 1SFC132044M0201
 - Modbus 1SFC132046M0201

Chapter 9 Maintenance

Regular maintenance	125
Service and repair	125

Maintenance

Chapter 9 Maintenance

This chapter describes the maintenance required for the softstarter. In principle, the product is maintenance free but some items should be checked regularly.

Caution!

Do not open the softstarter or touch any live parts when the main and supply voltage is connected.

9:1 Regular maintenance

- Check that all mounting bolts/screws are fastened. Tighten if necessary.
- Check that all connections of main, control- and supply circuits are fastened. Tighten the terminal screws and bolts on the connection bars, if necessary.
- Check that the cooling airways are free from dirt and dust. If required, use pressurized air to clean.
- · Check external filters. Clean, if necessary.
- Check that the fan is working and rotating freely. The blades shall rotate without any resistance and this can be checked at voltage free state.
- Check the real time clock and adjust if necessary.

In case of a fault or if a fault can not be reset, see Chapter 11 "Trouble shooting".

9:2 Service and repair

In case the softstarter has to be repaired, a spare parts list and necessary instructions are available at *www.abb.com/lowvoltage*.

Service and repair should be performed buy authorized personnel only. Note that unauthorized repair may affect the warranty.

- Spare part list 1SFC132005M0201
- Changing PCB 1SFC132009M0201
- Changing of SCR 5309 705-1 (PSS/PST)
- Changing of SCR 1SFC132006M0201 (PSTB)

Chapter 9 Maintenance

Chapter 10 Functions

Setting current	1
Start mode 132	2
Stop mode	3
Tune torque control	4
Start ramp 134	4
Stop ramp 135	5
Initial voltage	5
End voltage 136	6
Step down voltage	6
Current limit	7
Torque limit	7
Kick start 138	8
Kick start level 138	8
Kick start time	8
Start ramp range	9
Stop ramp range	9
Overload protection type	0
Overload protection class	0
Overload protection, dual type, start class	1
Overload protection, dual type, run class	1
Overload protection, type of operation	2
Locked rotor protection	3
Locked rotor protection level	3
Locked rotor protection time	4
Locked rotor protection, type of operation	4
Underload protection	5
Underload protection level 148	5
Underload protection time	6
Underload protection, type of operation	6
Phase imbalance protection	7
Phase imbalance protection level	7
Phase imbalance protection, type of operation	8
High current protection	8
High current protection, type of operation	9
Phase reversal protection	9
Phase reversal protection, type of operation	0
PTC protection	0
PTC protection, type of operation	1

Function

External by-pass	151
High current warning	152
High current warning level	152
Low current warning	152
Low current warning level	153
Overload warning	153
Overload warning level	153
Thyristor (SCR) overload warning	154
Phase loss fault, type of operation	154
Fieldbus fault, type of operation	154
Frequency fault, type of operation	155
Heat sink over-temperature fault, type of operation	155
Thyristor short circuit fault, type of operation	156
By-pass doesn't open fault, type of operation	156
By-pass doesn't close fault, type of operation	157
Programmable inputs. In0 and In1	157
Programmable output relays. K4, K5 and K6	159
Programmable software output V7	161
Analog output	161
Analog output, reference	162
Analog output, type of value	162
Analog output, range max	163
Fieldbus control	164
Fieldbus type	165
Fieldbus address	166
Fieldbus auto disable	166
Sequence start, number of sequences	167
Start ramp, first sequence	167
Initial voltage, first sequence	168
Current limit, first sequence	168
Setting current, first sequence	168
Start ramp, second sequence	169
Initial voltage, second sequence	169
Current limit, second sequence	169
Setting current, second sequence	170
Start ramp, third sequence	170
Initial voltage, third sequence	170
Current limit, third sequence	171
Setting current, third sequence	171
Language	172

CD automatic switch-off 172
assword 173
ate type 173
ear 174
Ionth 174
ay174
our 17!
linutes
ual current limit time
ual current limit level

Chapter

Chapter 10 Functions

This chapter describes all settings and functions possible in the softstarter, as well as the easiest way of finding them. The respective default values, setting ranges and parameter texts shown in the display are also stated.

10:1 Setting current

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Setting le

The setting of this parameter shall be according to the current the softstarter is exposed to. If the motor is connected In Line, set the rated motor current (see rating plate on the motor).

If the motor is connected Inside Delta, set the current in the Delta circuit calculated by rated motor current divided by $1/(\sqrt{3}) = 58$ % of the rated motor current.

Parameter text	Default value	Setting range	Description
Setting le	Individual (size related)	91207A divided into 19 overlap- ping ranges	Rated motor cur- rent

Figure 1: Voltage ramp

^I Start ^I Time

Figure 2: Torque ramp

10:2 Start mode

Path in menu: Menu/SETTINGS/Functional Settings/ Torque control/ Start Mode

Using the PST softstarter it is possible to choose between two different types of start ramps. These are voltage ramp and torque ramp.

- Voltage ramp When using the voltage ramp, the voltage is increased linearly from the start level to full voltage during start. Since the torque depends on both the voltage and the current, the torque curve does not always follow the voltage curve. This has the effect that the torque curve will not increase or decrease linearly.
- Torque ramp When using the torque ramp, the output voltage to the motor is controlled so that the torque will follow a predefined optimal curve from the start level to full voltage during start. This has the benefit that the mechanical starting behavior of the equipment driven by the motor will be much softer than when using voltage ramp.

Parameter text	Default value	Setting range	Description
Start Mode	Volt	Volt, Torque	Type of start ramp

Figure 4: Torque ramp

10:3 Stop mode

Path in menu: Menu/SETTINGS/Functional Settings/ Torque control/ Stop Mode

Using the PST softstarter it is possible to choose between two different types of stop ramps. These are voltage ramp and torque ramp.

Voltage ramp When using the voltage ramp, the voltage is decreased linearly from full voltage to the end voltage during stop. Since the torque depends on both the voltage and the current, the torque curve does not always follow the voltage curve. This has the effect that the torque curve will not increase or decrease linearly.

Torque ramp When using the torque ramp, the output voltage to the motor is controlled so that the torque will follow a predefined optimal curve from full voltage to end voltage during stop. This has the benefit that the mechanical stopping behavior of the equipment driven by the motor will be much softer than when using voltage ramp. This can be especially useful in pump applications where a sudden stop can cause water hammering and pressure surges.

Parameter text	Default value	Setting range	Description
Stop Mode	Volt	Volt, Torque	Type of stop ramp

10:4 Tune torque control

Path in menu:

Menu/SETTINGS/Functional Settings/Torque control/ Tune T-Ctrl

With this parameter it is possible to change the speed of the regulator that regulates the voltage so that the torque will follow a predefined torque curve. In most cases, this parameter will not have to be changed from its default value which is 100%. If a dip occurs in the torque curve during stop, increasing this parameter can solve the problem. This parameter should not be set too high though, since this can cause the torque curve. If this is the case, decrease this parameter.

Parameter text	Default value	Setting range	Description
Tune T-Ctrl	100%	30300%	The speed of the regulator

10:5 Start ramp

Figure 5: Start ramp

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Start Ramp

When a start signal is given the softstarter performs a start ramp by controlling the output voltage to the motor so that either the voltage or the torque increases from the start level to full voltage, depending on which ramp type is selected. The start ramp continues until full voltage is applied to the motor.

Parameter text	Default value	Setting range	Description
Start Ramp	10 s	130s, 1120s (Range depends on Start Range)	Time for start ramp

10:6 Stop ramp

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Stop Ramp

When a stop signal is given, the softstarter performs a stop ramp by controlling the output voltage to the motor so that either the voltage or the torque decreases from full voltage to end voltage, depending on which ramp type is selected. If the ramp time is set to 0, the softstarter will cut the voltage directly when the stop command is given.

This parameter shall be set to 0 for applications with big flywheel mass involved!

Parameter text	Default value	Setting range	Description
Stop Ramp	0 s	030s, 0120s (Range depends on Stop Range)	Time for stop ramp

10:7 Initial voltage

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Init Volt

This parameter makes it possible to set the voltage level where the start ramp begins. The voltage or the torque will then increase from this level to full voltage. If the initial voltage is set too low, it will only cause longer starting time and unnecessary heating of the motor.

Parameter text	Default value	Setting range	Description
Init Volt	30%	3070%	Initial voltage for start ramp

Figure 6: Stop ramp

Figure 7: Initial voltage for Start ramp

Figure 8: End voltage for Stop ramp

10:8 End voltage

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / End Volt

This parameter makes it possible to set the voltage level where the stop ramp ends. The voltage or the torque will decrease from full voltage to this level and then cut the power to the motor. This function will be active only if parameter Stop ramp is used.

Parameter text	Default value	Setting range	Description
End Volt	30%	3070%	End voltage for stop ramp

10:9 Step down voltage

Figure 9: Step down voltage for Stop ramp

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Step Down

When stopping a motor using the stop ramp, the speed will not decrease immediately. The step down voltage function makes it possible to set a level where the motor speed decreases as soon as the stop ramp begins. By this, a more optimized stopping of the motor is achieved. This function is not available when the stop mode is set to "torque".

Parameter text	Default value	Setting range	Description
Step Down	100%	30100%	Voltage value to which the soft- starter shall step down at stop and where it shall commence the stop ramp.

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Current Lim

It is possible to limit the starting current by using this function. When the current limit is reached, the output voltage stays stable until the current level falls below the limit, then the ramping continues.

The starting current must be high enough to make it possible for the motor to reach the rated speed. The lowest possible current depends on the performance of the motor and the characteristics of the load.

Parameter text	Default value	Setting range	Description
Current Lim	4.0 x l _e	2.07.0x l _e	Level of the current limit

10:11 Torque limit

It is possible to limit the starting torque by setting this parameter. When the torque limit is reached, the output voltage stays stable until the torque falls below the limit, then the ramping continues.

Torque limit is only available when start mode is set to torque.

Parameter text	Default value	Setting range	Description
Torque Limit	150 %	20200%	Level of the torque limit compared to the nominal torque of the motor

Figure 10: Current limit

Figure 11: Torque limit

Figure 12: Kick start

10:12 Kick start

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Kick Start

In some applications it can be necessary to kick loose the motor i.e. initial friction, and therefore a kick start can be used. With this function a selectable fix voltage is applied during a settable time. Note that the current limit function is not working during kick start.

Parameter text	Default value	Setting range	Description
Kick Start	No	Yes, No	Selection of Kick Start

10:13 Kick start level

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Kick Level

With this parameter it is possible to set the level of the kick start. It is active only if kick start is selected.

Parameter text	Default value	Setting range	Description
Kick Level	50%	50100%	Level of Kick Start

10:14 Kick start time

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Kick Time

This parameter makes it possible to set the time of the kick start. It is active only if kick start is selected.

Parameter text	Default value	Setting range	Description
Kick Time	0.2 s	0.11.5 s	Time for Kick Start

10:15 Start ramp range

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Start Range

The time of the start ramp is settable up to 30 seconds as default, but if required the range could be extended up to 120 seconds by this parameter.

A too long ramp time will increase the risk of tripping the overload protection.

Parameter text	Default value	Setting range	Description
Start Range	1-30 s	1-30 s, 1-120 s	Selectable range for start ramp

10:16 Stop ramp range

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop / Stop Range

The time for the stop ramp is settable up to 30 seconds as default, but if required the range could be extended up to 120 seconds by this parameter.

Parameter text	Default value	Setting range	Description
Stop Range	0-30 s	0-30 s, 0-120 s	Selectable range for stop ramp

10:17 Overload protection type

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Overload

This parameter makes it possible to set the required function of the integrated motor overload protection. Too high motor temperature causes a stop of the motor and a reset is necessary before a restart is possible.

The motor overload protection has three different modes:

No	The protection is not activated.
NO	The protection is not activated.

Normal The protection is in normal operation.

Dual The protection has two classes, one during start and another during continuous run.

Parameter text	Default value	Setting range	Description
Overload	Normal	No, Normal, Dual	Overload protec- tion

The motor temperature with time marking is stored for two hours after power loss.

10:18 Overload protection class

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Overload/OL Class

This parameter makes it possible to set the required class of the motor overload protection. Four different classes are available according to figure 13.

- Class 10A
- Class 10
- Class 20
- Class 30

Parameter text	Default value	Setting range	Description
OL Class	10	10A, 10, 20, 30	Overload class

Figure 13: Tripping curves for the electronic overload

- A Class 30
- B Class 20
- C Class 10
- D Class 10A

10:19 Overload protection, dual type, start class

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Overload/Dual Class S

This parameter makes it possible to set the required class of the overload protection during start. When full voltage is reached there will be a switch-over to run class after 30 seconds. (see below).

Parameter text	Default value	Setting range	Description
OL Class S	10	10A, 10, 20, 30	Overload class, Dual type, Start Class

10:20 Overload protection, dual type, run class

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Overload/Dual Class R

This parameter makes it possible to set the required class of the overload protection for continuous run. The run class is activated 30 seconds after full voltage has been reached.

Parameter text	Default value	Setting range	Description
OL Class R	10	10A, 10, 20, 30	Overload class, Dual type, Run Class

10:21 Overload protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Overload/OL Op

This parameter makes it possible to select between three different actions by the softstarter when the protection is activated. It is active only if the motor overload protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears (motor temp. <80%)
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
OL Op	Stop–M	Stop–M, Stop–A, Ind	Type of opera- tion for over- load protection

10:22 Locked rotor protection

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Locked Rotor

If the motor current exceeds the set level and the set time when the motor is running at full voltage, this protection is activated. The protection starts monitoring when full voltage is applied to the motor.

Parameter text	Default value	Setting range	Description
Locked Rotor	No	Yes, No	Locked rotor protection

10:23 Locked rotor protection level

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Locked Rotor/Lock R Lev

This function makes it possible to set the level of the locked rotor protection. It is active only if Locked rotor protection is selected.

Parameter text	Default value	Setting range	Description
Lock R Lev	4.0 x l _e	0.58.0 x l _e	Trip level for locked rotor protection

10:24 Locked rotor protection time

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Locked Rotor/Lock R Time

This parameter makes it possible to set the delay time from detection until activation of the protection. It is active only if Locked rotor protection is selected.

Parameter text	Default value	Setting range	Description
Lock R Time	1.0 s	0.210.0 s	Trip time for locked rotor pro- tection

10:25 Locked rotor protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Locked Rotor/Lock R Op

This parameter makes it possible to select between three different actions of the softstarter when the protection is activated. It is active only if the Locked rotor protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
Lock R Op	Stop–M	Stop–M, Stop–A, Ind	Type of opera- tion for locked rotor protection
10:26 Underload protection

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Underload

If the motor current falls below the set level and the set time when the motor is running at full voltage, the protection is activated. The protection starts monitoring when full voltage is applied to the motor.

This protection could be used to avoid for example a pump running dry, detect a broken belt or similar.

Parameter text	Default value	Setting range	Description
Underload	No	Yes, No	Underload pro- tection

10:27 Underload protection level

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Underload/Underl Lev

This parameter makes it possible to set the level of the underload protection. It is active only if the underload protection is selected.

Parameter text	Default value	Setting range	Description
Underl Lev	0.5 x l _e	0.40.8 x l _e	Trip level for Underload pro- tection

10:28 Underload protection time

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Underload/Underl Time

This parameter makes it possible to set the delay time from detection until the protection is activated. It is active only if underload protection is selected.

Parameter text	Default value	Setting range	Description
Underl Time	10 s	130 s	Trip time for Underload pro- tection

10:29 Underload protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Underload/Underl Op

This parameter makes it possible to select between three different actions of the softstarter when the protection is activated. It is active only if the underload protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
Underl Op	Stop–M	Stop–M, Stop–A, Ind	Type of opera- tion for Under- load protection

10:30 Phase imbalance protection

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Phase Imb

If the current in one phase differs from another phase with more than the set level the protection is activated. The protection starts monitoring 30 seconds after full voltage, and trips after 10 seconds of imbalance.

Parameter text	Default value	Setting range	Description
Phase Imb	No	Yes, No	Phase imbal- ance protection

10:31 Phase imbalance protection level

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Phase Imb/Ph Imb Lev

This parameter makes it possible to set the level of the phase imbalance protection. It is active only if the Phase imbalance protection is selected.

Parameter text	Default value	Setting range	Description
Ph Imb Lev	80%	1080%	Trip level for Phase imbal- ance protection

10:32 Phase imbalance protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Phase Imb/Phase Imb Op

This parameter makes it possible to select between three different actions of the softstarter when the protection is activated. It is active only if the phase imbalance protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
Ph Imb Op	Stop–M	Stop–M, Stop–A, Ind	Type of opera- tion for Phase imbalance pro- tection

10:33 High current protection

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/High I

This is a current protection with a fixed level of 8 x le during 200 ms. The protection is activated if the current exceeds this level and time.

Parameter text	Default value	Setting range	Description
High I	No	Yes, No	High current pro- tection

10:34 High current protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/High I/High I Op

This parameter makes it possible to select between three different actions of the softstarter when the protection is activated. It is active only if the high current protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
High I Op	Stop–M	Stop–M, Stop–A, Ind	Type of opera- tion for high cur- rent protection

10:35 Phase reversal protection

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Phase Rev

The softstarter accepts any phase sequence but if this protection is selected, the phase sequence must be L1, L2, L3, or else the protection is activated.

Parameter text	Default value	Setting range	Description
Phase Rev	No	Yes, No	Phase reversal protection

10:36 Phase reversal protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/Phase Rev/Ph Rev Op

This parameter makes it possible to select between three different actions of the softstarter when the protection is activated. It is active only if the phase reversal protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
Ph Rev Op	Stop–M	Stop–M, Stop–A, Ind	Type of operation for phase rever- sal protection

10:37 PTC protection

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/PTC

The softstarter has an input for an external PTC thermistor that can be used independent of the built-in electronic overload protection status.

The terminals used for the PTC input are also used for the analog output, so only one of these functions can be used.

Parameter text	Default value	Setting range	Description
PTC	No	Yes, No	PTC protection

10:38 PTC protection, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Protections/PTC/PTC Op

This parameter makes it possible to select between three different actions of the softstarter when the protection is activated. It is active only if the PTC protection is selected.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.
- Ind The motor continues to run but a fault indication is given.

Parameter text	Default value	Setting range	Description
PTC Op	Stop M	Stop–M, Stop–A, Ind	Type of opera- tion for PTC pro- tection

10:39 External by-pass

Path in menu: Menu/SETTINGS/Functional Settings/ Start/Stop/Ext ByPass

This parameter defines whether an external By-Pass contactor is used or not.

If an external By-pass contactor is used, an output relay should be configured as TOR and be connected to the contactor. The by-pass contactor is then activated when the voltage reaches 100% and the current has been below $1.2 \times I_e$ continuously for 1 s or after a 3 s timeout.

Parameter text	Default value	Setting range	Description
Ext ByPass	No	Yes, No	An external Bypass contac- tor is used

10:40 High current warning

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn I=High

If the function is selected, a warning signal will be given provided that the current during full voltage is higher than the set value. The measurement starts 30 seconds after **full voltage** is reached.

Parameter text	Default value	Setting range	Description
Warn I=High	No	Yes, No	High current warning

10:41 High current warning level

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn I=High/Wa I=H Lev

This parameter makes it possible to set the indication level of the high current warning function.

Parameter text	Default value	Setting range	Description
WA I=H Lev	1.2 x l _e	0.55.0 X I _e	Trip level for high current warning

10:42 Low current warning

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn I=Low

If the function is selected, a warning signal will be given provided that the current during full voltage is lower than the set value. The measurement starts 30 seconds after **full voltage** is reached.

Parameter text	Default value	Setting range	Description
Wa I=Low	No	Yes, No	Low current warning

10:43 Low current warning level

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn I=Low/Wa I=L Lev

This parameter makes it possible to set the indication level of the low current warning function.

Parameter text	Default value	Setting range	Description
Wa I = L Lev	0.8 x l _e	0.41.0 x l _e	Trip level for low current warning

10:44 Overload warning

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn OL

If the function is selected a warning signal will be given that the overload protection will be activated, if the motor load does not decrease.

Parameter text	Default value	Setting range	Description
Warn OL	No	Yes, No	Overload warning

10:45 Overload warning level

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn OL/Wa OL Lev

This parameter makes it possible to set the indication level of the motor overload protection. The actual trip level of the protection is represented by 100%.

Parameter text	Default value	Setting range	Description
Wa OL Lev	90%	4099%	Trip level for overload warning

10:46 Thyristor (SCR) overload warning

Path in menu: Menu/SETTINGS/Functional Settings/ Warnings/Warn SCR OL

If this function is selected, a warning signal will be given that the thyristor overload protection will be activated, if the current does not decrease. The warning level is 90%.

Parameter text	Default value	Setting range	Description
Warn SCR OL	No	Yes, No	Thyristor over- load warning

10:47 Phase loss fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Faults/Ph Loss Op

This parameter makes it possible to select between two different actions of the softstarter if a phase loss fault occurs.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
Ph Loss Op	Stop–M	Stop–M, Stop–A	Type of opera- tion for phase loss fault

10:48 Fieldbus fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Faults/FB Fault Op

This parameter makes it possible to select between two different actions of the softstarter if a fault occurs in the fieldbus communication.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
FB Fault Op	Stop–M	Stop–M, Stop–A	Type of opera- tion for fieldbus fault

10:49 Frequency fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Faults/Freq F Op

This parameter makes it possible to select between two different actions of the softstarter if the frequency is out of range (frequency fault).

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
Freq F Op	Stop-M	Stop–M, Stop–A	Type of operation for frequency fault

10:50 Heat sink over-temperature fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Faults/HS Temp Op

This parameter makes it possible to select between two different actions if the heat sink temperature of the softstarter is too high.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
HS Temp Op	Stop–M	Stop–M, Stop–A	Type of opera- tion for heat sink over temperature fault

10:51 Thyristor short circuit fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/ Faults/SCR SC Op

If one or several thyristors are shorted, this parameter makes it possible to select between two different actions of the softstarter.

- Stop–M The motor stops and a manual reset is required before restart.
- Stop–A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
SCR SC Op	Stop-M	Stop–M, Stop–A	Type of opera- tion for thyristor short circuit fault

10:52 By-pass doesn't open fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/Faults/ BP Closed Op

This parameter makes it possible to select between two different actions of the softstarter if the by-pass contactor does not open in a proper way.

- Stop-M The motor stops and a manual reset is required before restart.
- Stop-A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
BP Closed Op	Stop-M	Stop-M, Stop-A	Type of opera- tion if the by- pass does not open

10:53 By-pass doesn't close fault, type of operation

Path in menu: Menu/SETTINGS/Functional Settings/Faults/BP Open Op

This parameter makes it possible to select between two different actions of the softstarter if the by-pass contactor does not close in a proper way.

- Stop-M The motor stops and a manual reset is required before restart.
- Stop-A The motor stops and an automatic reset is performed when the fault disappears.

Parameter text	Default value	Setting range	Description
BP Open Op	Stop-M	Stop-M, Stop-A	Type of opera- tion if the by- pass does not close

10:54 Programmable inputs, In0 and In1

Path in menu: Menu/SETTINGS/Functional Settings/ Inputs/In0 / In1

The softstarter has two programmable inputs, In0 and In1. They can be used for different purposes depending on the selected function, independently of each other.

Parameter text	Default value	Setting range	Description
In0	Reset	None, Reset, Enable, Jog, DOL, Start2, FB-Dis	Function of pro- grammable input In0
In1	Reset	None, Reset, Enable, Jog, DOL, Start3, FB-Dis	Function of pro- grammable input In1

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control)
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

Warning!

Terminal 4, 5, 6, 7, 8, 9, 10, and 11 should be connected using 24V DC only. Other voltages may damage the softstarter and the warranty may no longer be valid.

Figure 14: Internal control voltage

Figure 15: External control voltage

10:55 Programmable output relays, K4, K5, and K6

Path in menu: Menu/SETTINGS/Functional Settings/ Outputs/Relay K4 / K5 / K6

Switch over relays

The softstarter has three programmable output relays that can be used for different purposes depending on the selected function, independently of each other. Relay K4 has default setting Run, relay K5 has default setting Top of Ramp and relay K6 has default setting Event.

Run signal is given during start ramp, running, and stop ramp if used. Can be used to control the line contactor.

Top of Ramp signal is given when full voltage to the motor is applied. Can be used to control an external by-pass contactor.

The event function has several alternatives that can be switched On/Off as required.

One, several or all indications can be used individually, independently of each other at the same time for each output relay.

- · Overload Protection
- · Fault group
- · High current protection
- · Thyristor overload protection
- Locked rotor protection
- Underload protection
- · Phase imbalance protection
- PTC protection
- · Phase reversal protection
- Overload warning
- Thyristor overload warning
- High current warning
- Low current warning
- · Shunt fault group

Description

2 fault groups can be selected. If any of the faults in a fault group occurs, a fault signal is given.

Fault group consists of:

- Phase loss fault
- · Fieldbus fault
- · Frequency fault
- · Heat sink over-temperature fault
- · By-pass doesn't open fault
- Connection fault
- Non conducting thyristor fault
- · Line side fault
- Kick-current fault
- Internal fault
- Fault Line/Delta

Shunt fault group consists of:

- · Thyristor short circuit fault
- By-pass doesn't open fault

The shunt fault signal can be used to trip an upstream breaker in case the softstarter is not able to stop the motor.

Parameter text	Default value	Setting range	Description
Relay K4	Run	Run, TOR, Event	Function of pro- grammable relay output K4.
Relay K5	TOR	Run, TOR, Event	Function of pro- grammable relay output K5.
Relay K6	Event	Run, TOR, Event	Function of pro- grammable relay output K6.

10:56 Programmable software output V7

Path in menu: Menu/SETTINGS/Functional Settings/ Outputs/SW Outp V7

If the softstarter is used with fieldbus communication, a fourth output is available. This is a software output only and the signal can be taken only through the fieldbus interface. (See 50 "Programmable output relays, K4, K5, and K6" for further explanations.

Parameter text	Default value	Setting range	Description
SW Outp V7	Event	Run, TOR, Event	Function of pro- grammable soft- ware output V7.

10:57 Analog output

Path in menu: Menu/SETTINGS/Functional Settings/ Analog Output /Analog Out

With this parameter it is possible to enable the analog output.

The softstarter has one analog output. The terminals used for the analog output are also used for the PTC protection though, so only one of these functions can be used at any given time.

When sequence start is used, the analog output is only active for the last started motor.

Parameter text	Default value	Setting range	Description
Analog Out	No	Yes, No	Enable analog output

10:58 Analog output, reference

Path in menu: Menu/SETTINGS/Functional Settings/ Analog Output /Anl Ref

With this parameter it is possible to set the unit and the range of the signal to output. This selected range will be the physical output from the softstarter. This range should be selected to suit the analog meter or the PLC that uses this signal as its input. The possible options are:

- 0-10 V
- 0-20 mA
- 4-20 mA

If for instance 4-20 mA is selected, then this range will represent 0-100% of the output signal, for instance the current of the motor.

Parameter text	Default value	Setting range	Description
Anl Ref	420 mA	010V, 020mA, 420mA	The type of the output signal of the analog out- put

10:59 Analog output, type of value

Path in menu: Menu/SETTINGS/Functional Settings/ Analog Output /Anl Type

With this parameter it is possible to set which type of value that should be the output of the analog output. The possible types of values are:

I Amp Current of the motor U Volt Main voltage P kW Active power kW P hp Active power hp Q kVAr Reactive power S kVA Apparent power TmpMot Calculated temperature of the motor TmpSCR Calculated temperature of the SCR cosPhi Power factor

Parameter text	Default value	Setting range	Description
Anl Type	I Amp	I Amp, U Volt, P kW, P hp, Q kVAr, S kVA, TmpMot, TmpSCR, cosPhi	The type of value to output from the analog output

10:60 Analog output, range max

Path in menu: Menu/SETTINGS/Functional Settings/ Analog Output/ I/U/P/Q/S Range Max

With this parameter it is possible to set the value that will be represented as the maximum value by an analog meter or by a PLC. If for instance this parameter is set to 20000A, then 0-20000A will be represented by 0-100% by a PLC or an analog meter.

If the actual value happens to be greater than the selected maximum value then the actual value will still only be represented as the selected maximum value. This can be useful if for instance very large currents occur during start and only the currents during continuous run are of interest.

The possible range and the unit depend on which type of output is selected. The range for the different output types are listed below:

Current of the motor	I Range Max	10-20000A
Main voltage	U Range Max	10-1000 V
Active power kW	kW Range Max	1-3000 kW
Active power hp	hp Range Max	1-4000 hp
Reactive power	Q Range Max	1-3000 kVAr
Apparent power	S Range Max	1-3000 kVA

Only the valid parameter is displayed. If for instance I Amp is selected as output type, then only I Range Max will appear. If TmpMot, TmpSCR or cosPhi is selected as output type, this range parameter will not appear at all. When selecting TmpMot or TmpSCR the range will always be 0-100% and when selecting cosPhi the range will be 0-1.

Parameter text	Default value	Setting range	Description
l Range Max	PST(B) size dependent	1020000 A	Upper limit for the current for the analog out- put
U Range Max	600 V	101000 V	Upper limit for the voltage for the analog out- put
kW Range Max	PST(B) size dependent	13000 kW	Upper limit for the active power for the analog output
hp Range Max	PST(B) size dependent	14000 hp	Upper limit for the active power for the analog output
Q Range Max	PST(B) size dependent	13000 kVAr	Upper limit for the reactive power for the analog output
S Range Max	PST(B) size dependent	13000 kVA	Upper limit for the apparent power for the analog output

10:61 Fieldbus control

Path in menu: Menu/SETTINGS/Functional Settings/ Fieldbus/Fieldb Ctrl

If the softstarter is going to be used with fieldbus communication, the fieldbus interface must be activated before any action can be taken.

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control)
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

Parameter text	Default value	Setting range	Description
Fieldb Ctrl	No	Yes, No	Control of the softstarter with fieldbus.

10:62 Fieldbus type

Path in menu: Menu/SETTINGS/Functional Settings/ Fieldbus/Fieldb Ctrl/Fieldb Type

When the fieldbus communication is used, the present type of fieldbus must be selected.

The following fieldbus types are available in the softstarter:

- AS-Interface
- DeviceNet
- Profibus DP
- Modbus

Parameter text	Default value	Setting range	Description
Fieldb Type	Other	AS-Int, Other	Type of fieldbus, AS-Inter- face=short pro- tocol. Other=long pro- tocol.

10:63 Fieldbus address

Path in menu: Menu/SETTINGS/Functional Settings/ Fieldbus/Fieldb Addr

With this parameter it is possible to set a fieldbus address for the softstarter. Select a suitable, not occupied number as the address.

Parameter text	Default value	Setting range	Description
Fieldb Addr	0	01000	Fieldbus address

10:64 Fieldbus auto disable

Path in menu: Menu/SETTINGS/Functional Settings/ Fieldbus/FB Auto Dis

This parameter enables the function fieldbus auto disable. With this function enabled, the control of the softstarter will automatically switch over from the fieldbus to the hard wire inputs if the fieldbus malfunctions for instance due to power loss or broken cable. When the fieldbus starts working again the control is automatically switched back to the fieldbus.

Parameter text	Default value	Setting range	Description
FB Auto Dis	No	Yes, No	Enable fieldbus auto disable

Caution!

The motor may start unexpectedly if there is a start signal present when doing any of the actions listed below.

- Switching from one type of control to another (fieldbus control / hardwire control). Remember that when Fieldbus auto disable is active, this switch can be done automatically.
- Re-programming of the programmable inputs
- Reset all Settings (programmable input set to Enable)

10:65 Sequence start, number of sequences

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/No of Seq

The softstarter can start motors with up to three different parameter sets (1st parameter set, 2nd parameter set and 3rd parameter set). This function can be used for starting motors in a sequence (one by one) and also for starting two or three speed motors where different starting parameters are required for each speed.

Parameter text	Default value	Setting range	Description
No of Seq	No	No, 2, 3	Number of sequences for sequence start.

The LOCAL CONTROL menu can not be entered if Sequence start is selected.

10:66 Start ramp, first sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/1st Seq. Param./Start Ramp1

This parameter makes it possible to set the start ramp time for the first parameter set.

Parameter text	Default value	Setting range	Description
Start Ramp1	10 s	130s, 1120s	First sequence, time for start ramp

10:67 Initial voltage, first sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/1st Seq. Param./Init Volt1

This parameter makes it possible to set the initial voltage for the first parameter set

Parameter text	Default value	Setting range	Description
Init Volt1	30%	3070%	First sequence, initial voltage for start ramp

10:68 Current limit, first sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/1st Seq. Param./Curr Lim1

This parameter makes it possible to set the current limit level for the first parameter set.

Parameter text	Default value	Setting range	Description
Curr Lim1	4 x l _e	2.07.0 x l _e	First sequence, current limit

10:69 Setting current, first sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/1st Seq. Param./1st Set le

This parameter makes it possible to set the rated motor current for the first parameter set

Parameter text	Default value	Setting range	Description
1st Set le	lr	91207A divided into 19 overlap- ping ranges	First sequence, motor rated cur- rent

10:70 Start ramp, second sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/2nd Seq. Param./Start Ramp2

This parameter makes it possible to set the start ramp time for the second parameter set.

Parameter text	Default value	Setting range	Description
Start Ramp2	10 s	130s, 1120s	Second sequence, time
			for start ramp

10:71 Initial voltage, second sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/2nd Seq. Param./Init Volt2

This parameter makes it possible to set the initial voltage for the second parameter set.

Parameter text	Default value	Setting range	Description
Init Volt2	30%	3070%	Second sequence, ini- tial voltage for start ramp

10:72 Current limit, second sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/2nd Seq. Param./Curr Lim2

This parameter makes it possible to set the current limit level for the second parameter set.

Parameter text	Default value	Setting range	Description
Curr Lim2	4 x l _e	2.07.0 x l _e	Second sequence, cur- rent limit

10:73 Setting current, second sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/2nd Seq. Param./2nd Set le

This parameter makes it possible to set the rated motor current for the second parameter set.

Parameter text	Default value	Setting range	Description
2nd Set le	lr	91207A divided into 19 overlap- ping ranges	Second sequence, motor rated current

10:74 Start ramp, third sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/3rd Seq. Param./Start Ramp3

This parameter makes it possible to set the start ramp time for the third parameter set.

Parameter text	Default value	Setting range	Description
Start Ramp3	10 s	130s, 1120s	Third sequence, time for start ramp

10:75 Initial voltage, third sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/3rd Seq. Param./Init Volt3

This parameter makes it possible to set the initial voltage for the third parameter set.

Parameter text	Default value	Setting range	Description
Init Volt3	30%	3070%	Third sequence, initial voltage for start ramp

10:76 Current limit, third sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq Start/3rd Seq. Param./Curr Lim3

This parameter makes it possible to set the current limit level for the third parameter set.

Parameter text	Default value	Setting range	Description
Curr Lim3	4 x l _e	2.07.0 x l _e	Third sequence, current limit

10:77 Setting current, third sequence

Path in menu: Menu/SETTINGS/Functional Settings/ Seq. Start/3rd Seq. Param./3rd Set le

This parameter makes it possible to set the rated motor current for the third parameter set.

Parameter text	Default value	Setting range	Description
3rd Set le	Ir	91207A divided into 19 overlap- ping ranges	Third sequence, motor rated cur- rent

10:78 Language

Path in menu: Menu/SETTINGS/Presentation Set./Language

The text on the LCD display can be presented in 13 different languages. This parameter makes it possible to select among the following languages:

- English
- Polish
- Turkish
- Russian
- Chinese
- German
- Spanish
- French
- Italian
- Dutch
- Portuguese
- Swedish
- Finnish

Parameter text	Default value	Setting range	Description
Language	Individual	US/UK, PL, TR, RU, CN, DE, ES, FR, IT, NL, PT, SE, FI	Language to use on display

10:79 LCD automatic switch-off

Path in menu: Menu/SETTINGS/Presentation Set./LCD Auto Off

The LCD display on the softstarter will be automatically switched off by a pre-set time. This time is always calculated from the last key pressure With this parameter it is possible to set this time.

Parameter text	Default value	Setting range	Description
LCD Auto Off	15 min	1255 min	Time for display automatic turn off

10:80 Password

Path in menu: Top level Press Upper navigation key once.

This parameter makes it possible to set a password when locking the keypad from controlling and changing the settings. All menus are available when the keypad is locked but no changes or actions can be done.

Parameter text	Default value	Setting range	Description
Change Password	No	No, 1255	Password for display

10:81 Date type

Path in menu: Menu/SETTINGS/Presentation Set./Date Type

This parameter makes it possible to select the required type of date presentation on the LCD display. The following three options are available:

- ISO Year Month Day
- CE Day Month Year
- US Month Day Year

Parameter text	Default value	Setting range	Description
Date Type	ISO	ISO, CE US	Type of date presentation

10:82 Year

Path in menu: Menu/SETTINGS/Presentation Set./Date Year

This parameter makes it possible to set the current year for the real time clock.

Parameter text	Default value	Setting range	Description
Date Year	Individual	19012038	Year

10:83 Month

Path in menu: Menu/SETTINGS/Presentation Set./Date Month

This parameter makes it possible to set the current month for the real time clock.

Parameter text	Default value	Setting range	Description
Date Month	Individual	112	Month

10:84 Day

Path in menu: Menu/SETTINGS/Presentation Set.Date Day

This parameter makes it possible to set the current day for the real time clock.

Parameter text	Default value	Setting range	Description
Date Day	Individual	131	Day

10:85 Hour

Path in menu: Menu/SETTINGS/Presentation Set./Time Hour

This parameter makes it possible to set the current hour for the real time clock.

Parameter text	Default value	Setting range	Description				
Time Hour	Individual	023	Hour				

10:86 Minutes

Path in menu: Menu/SETTINGS/Presentation Set./Time Min

This parameter makes it possible to set the current minutes for the real time clock.

Parameter text	Default value	Setting range	Description
Time Min	Individual	059	Minutes

Figure 16: Dual current limit

10:87 Dual current limit time

Path in menu: Menu/SETTINGS/All Settings/C Lim Y Time

With this softstarter it is possible to use two different current limits: one which is active initially and a second one which is controlled by a timer and goes active when the timer runs out. This variable makes it possible to set the timer and thereby decide after how long time the current limit should switch from the normal current limit to the second current limit. The second current limit is only active when this variable is set to any value other than zero. This functionality is not available when sequence start is used.

Parameter text	Default value	Setting range	Description
C Lim Y Time	0 s	0120 s	Time until the second current limit will be used instead of the normal current limit

10:88 Dual current limit level

Path in menu: Menu/SETTINGS/All Settings/C Lim Y Lev

When the second current limit is activated, this parameter specifies the level of the dual current limit. This functionality is not available when sequence start is used.

Parameter text	Default value	Setting range	Description				
C Lim Y Lev	4.0 x le	2.07.0 x le	Level of the sec- ond current limit				

Chapter 11 Trouble shooting

General	179
Overview of indications	179
General problems and faults	180
Start up faults	181
Fault indication	181
Protection indication	185

Chapter 11 Trouble shooting

11:1 General

This chapter is a guide that can be used in case problems should arise with the softstarter or the application.

The softstarter normally indicates a fault with LED Fault, and the LCD displays what type of fault it is. When a protection is activated it will be indicated with LED Protection and the LCD displays what type of protection is active.

Faults not displayed in the softstarter can also be found in this chapter.

11:2 Overview of indications

This table shows in which state the different indications for protections, faults, and warnings may show up.

		Active when selected									Always active								Active when selected					
LCD indication	Overload protection	Underload protection	Locked rotor protection	High current protection	Phase imbalance protection	Phase reversal protection	PTC protection	Thyristor overload protection	Phsae loss fault	Connection fault	Frequency fault	Line side fault	Heat sink over-temperature fault	Kick-current fault	Thyristor short circuit fault	Non conducting thyristor	Fieldbus fault	By-pass doesn't open fault	By-pass doesn't close fault	Fault Line/Delta	Overload warning	Thyristor overload warning	High current warning	Low current warning
Stand by	Х	1	-	Х	-	1	Х	Х	-	-	I	-	Х	-	1	-	X ¹	-	-	-	Х	Х	-	-
At start signal	Х	I	-	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	-	Х	-	X ¹	-	-	-	Х	Х	-	-
Ramp up	Х	-	-	Х	-	-	Х	Х	Х	-	-	-	Х	X ²	-	Х	X ¹	-	-	Х	Х	Х	-	-
TOR	Х	Х	Х	Х	Х	-	Х	Х	Х	-	-	-	Х	-	-	Х	X ¹	-	X ³	-	Х	Х	Х	Х
At stop signal	Х	-	-	Х	-	-	Х	Х	Х	-	I	-	Х	-	X ⁴	Х	X ¹	X ³	-	-	Х	Х	-	-
Ramp down	Х	-	-	Х	-	-	Х	Х	Х	-	-	-	Х	-	Х	Х	X ¹	-	-	-	Х	Х	-	

1) Only if Fieldbus control is selected

2) Only if Kick-start is selected

3) Only if by-pass is used

4) Only if by-pass is <u>not</u> used

11:3 General problems and faults

Status	Possible cause	Solution					
Motor humming / starts without	Shorted thyristor.	• Ch	neck and replace.				
given start signal.	By-pass contactor stuck in closed position.		neck and correct the reason.				
Bad motor sound during start and operation.	Inside Delta connection wrong.	• Ch	neck and correct the wiring.				
Bad motor sound during stop.	Wrong ramp time for stop.	• Try me res	y different ramp times (some adjust- ents can be necessary for best sult).				
Motor does not start when giving	Control wiring not correct	• Ch	neck connections for start and stop.				
start command using the hard- ware inputs.	Start and stop command given at the same time.	 Ch no 	neck that start and stop command is t given at the same time.				
	Keypad is in Local Control menu.		neck that the keypad is not in Local ontrol menu.				
			neck that parameter Fieldbus Ctrl is to No.				
Motor does not start when giving start command using the fieldbus	Setting of fieldbus parameter wrong.		neck that parameter Fieldbus Ctrl is to Yes.				
communication.		• Ch	neck that bit "Enable" is used.				
		 Ch co 	neck that programmable inputs have rrect settings.				
Displayed current in LCD does not correspond to motor current.	Inside Delta connection.	• If t De (1	he softstarter is connected Inside elta, the current displayed is 58% $/(\sqrt{3})$) of the motor current.				
Displayed current in LCD is not stable	The motor is too small.	Ch to	neck that the softstarter corresponds				
	I he load on the motor is too small.	• Inc	crease the load if possible.				
	(current is out of measuring range).	• Ch co	heck that softstarter and motor sizes rrespond.				
Loading of parameters does not work properly.	Fieldbus settings.	• Se bu	e chapter Fieldbus for actual field- s type.				
11:4 Start up faults

11:5 Fault indication

Status	Possible cause	Solution
Phase loss fault	The main contactor or circuit breaker is open	Check and close contactor / breaker or any external switching device.
Power on Fault Protection	Fuse blown.	Check and replace the fuse in all three
-, -, -, -, -, -, -, -, -, -, -, -, -, -	Any external device open / tripped.	(3) phases.
Reset Back	Main contactor opens too quickly	Add a time delay before opening.
Connection fault	The motor connection is not	In Line connected
Power on Fault Protection	correct. Shorted thyristor at start.	 Check that there are no connections missing to the motor.
Fault Connection Reset Back		 Check that the connections are carried out correctly.
		Check and replace.
		Inside Delta connected
		 Check that there are no connections missing to the motor.
		 Check that the circuits are closed and correspond to the circuit diagram.
		Check and replace.

Status	Possible cause	Solution
Frequency fault Power on Fault Fault Wrong Freq Reset Back	The frequency is out of range. (47.5 - 52.5Hz or 57 - 63Hz)	Check and correct the frequency.
Line side fault Power on Fault Protection Fault Line Side Reset Back	The main voltage is not correct on the line side.	Check and correct voltage on the line side.
Heat sink over-temperature fault	Temperature too high on the heat sink. If the fault remains after reset, the heat sink temper- ature is too warm.	 Check that the fans are working in a proper way. Check that cooling airways are free from dirt and dust. Check that the ambient temperature is not too high.
Kick-current fault	Parameter <i>Setting I_e</i> is set too low.	 In Line connected Set the value according to the rated motor current. Inside Delta Set the value according to 58% (1/(√3)) of the rated motor current.
Thyristor short circuit fault	One or several SCRs are shorted.	Check and replace. Contact your ABB sales office for replacement kit.
Non conducting thyristor	One or several SCRs are not conducting.	Check and replace. Contact your ABB sales office for replacement kit.

Status	Possible cause	Solution
Fieldbus fault	The fieldbus communication is not working.	Check that the fieldbusplug is connected correctly.
Power on Fault Protection		Check that correct type of fieldbusplug is used.
Fault FB TimeoutResetBack		 Check that the parameter <i>Fieldbus Type</i> is set according to the present fieldbus type.
By-pass doesn't open fault	The by-pass contactor is not	Without by-pass
Power on Fault, Protection	opening properly.	 Check that the parameter Ext ByPass is set to No.
		With by-pass
Reset Back		 Check why the contactor is not opening and make necessary actions.
		 Check that the parameter Ext ByPass is set to Yes
By-pass doesn't close fault	The by-pass contactor is not	Without by-pass
Power on Fault Protection	closing properly.	 Check that the parameter Ext ByPass is set to No.
		With by-pass
Fault BP OpenResetBack		 Check why the contactor is not closing and make necessary actions.
		 Check that the parameter Ext ByPass is set to Yes
Fault Line/Delta	The softstarter is not able to accurately detect whether it is connected in line or inside delta. This is most likely due to unsta-	 Restart the softstarter. If the same error occurs again, try to reduce the distur- bances in the feeding network.
Fault Line/Delta Reset Back	ble line side power supply.	

Status	Possible cause	Solution
Internal faults	An internal communication fault of the softstarter has occurred.	 Disconnect and reconnect the supply voltage (U_s) and make a restart.
Power on Fault Protection		 If same fault remains, contact your ABB sales office.
Fault Intern 1		
Reset Back		
Power on Fault Protection		
Fault Intern 2		
Reset Back		
Power on Fault Protection		
Fault Intern 3		
Reset Back		
Power on Fault Protection		
Fault Intern 4		
Reset Back		
Power on Fault Protection		
Fault Intern 5		
Reset Back		

11:6 Protection indication

Status	Possible cause	Solution
Overload protection	The motor has been exposed to	In Line
	an overload condition because the current over a certain time is too high. (The load on the motor shaft is too high)	At start
Power on Fault Protection 		 Check and correct the reason for the overload. Check that current limit level is not set too low.
Resel Dack		Check that the ramp time for start is not too long.
		 Check that correct overload class is used.
		Check that parameter Setting le is cor- rect.
		Continuous run
		 Check and correct the reason for the overload.
		Inside Delta
		At start
		 Check and correct the reason for the overload.
		 Check that current limit level is not set too low.
		Check that the ramp time for start is not too long.
		 Check that correct overload class is used.
		- Check that parameter Setting le is set to 58% ($1/(\surd{3})$) of the rated motor current.
		Continuous run
		 Check and correct the reason for the overload

Status	Possible cause	Solution
Underload protection Power on Fault Protection Prot Underload Protection Prot Underload Back	The motor current is below set level and time.	 Check and correct the reason for the underload. Check that the settings are according to the operation conditions.
Locked rotor protection	The motor is running stiff by some reason. A damaged bearing or a stucked load could be possible causes.	 Check the bearings of the motor and load. Check that the load is not running stiff.
High current protection Power on Fault Protection Prot High I Reset Back	A fault current, higher than 8 times the softstarter ratings, has occurred.	Check the circuits including the motor for any insulation fault phase to phase or earth fault.
Phase imbalance protection Power on Fault Protection Prot Phase Imb. Reset Back	Unbalance in the phase currents.	Check the main voltage and the motor circuit.Restart the motor and check the phase currents
Phase reversal protection Power on Fault Protection Prot Phase Rev Reset Back	The phase sequence is not correct.	 Change the phase sequence on the line side to (L1-L2-L3).

Status	Possible cause	Solution
PTC protection	An over-temperature is detected by the PTC thermistors in the motor.	Check that the PTC circuit is closed and that the inputs are connected.
Power on Fault Protection		 Check and correct the reason for the overheating.
Prot PTC Reset Back		 Wait for the motor to cool sufficiently and restart.
Thyristor overload protection	The softstarter is too small. Too many starts / hour. The ramp time for start is too long.	Check and replace the softstarter with one of a suitable size.
Power on Fault Protection		Check and decrease number of starts / hour.
Prot SCR OL Reset Back		 Check that current limit level is not set too low.
		 Check that the ramp time for start is not too long.

Chapter 12 Diagrams

Circuit diagram PST30PST300	191
Circuit diagram PSTB370PSTB1050	192

Diagrams

Chapter 12 Diagrams 12:1 Circuit diagram PST30..PST300

Terminal 3 is a function earth, it is not a protection earth. It shall be connected to the mounting plate.

Figure 2: Circuit diagram PST30...300 (UL version)

Figure 3: Circuit diagram PSTB370...PSTB1050 (IEC version)

9

Figure 4: Circuit diagram PSTB370...1050 (UL version)

Chapter 13 Index

Numerics

1st Seq. Param. 112, 167, 168 1st Set le 111, 168 2nd Seq. Param. 113 2nd Seq. Param. 169, 170 2nd Set le 111, 170 3rd Seq. Param. 113 3rd Seq. Param. 170, 171 3rd Set le 112 3rdSet le 171

A

Abbreviations 13 Acronyms 13 Active 67 Airways 38 All settings 69, 78, 116 Altitude 26 Analog Out 108, 161, 162 Analog output 108, 161, 162 Analog output, range max 163 Analog output, reference 162, 163 Analog output, type of value 162, 163 Anl Ref 162 Anl Type 162 Application Setting 18, 69, 78, 87 AS-Interface 121, 165 Axial Fan 87

В

Basic settings 69, 78, 90 Bow Thruster 87 BP Closed Op 103 BP Open Op 103 By 156, 157 By-pass doesn't close operation 103 By-pass doesn't open operation 103 By-Pass fault 183

С

Centrifugal Fan 87 Centrifugal Pump 87 Change Password 86 Changed settings 69, 117 Circuit diagram 191 Communication devices, connection 56 Communication protocols 27 Compressor 87 Configuration 18 Connection 17, 43, 72 Communication devices 56 Control circuit 47 Earthing 47 Main circuit 43 Programmable inputs 50 Programmable output relay K4 52 Programmable output relay K5 52 Programmable output relay K6 53 PTC input 53, 54 Standard 17 Start and Stop 48 Connection fault 181

Connections 24 Control circuit 47 Connection 47 Conventional circuit 48 Convevor 87 Cooling 21, 38 Cooling system 27 cosPhi 72 Crusher 87 Current 131 Current Lim 91 Current limit 22, 91, 137 Curr Lim1 168 Curr Lim2 169 Curr Lim3 171 Current Lim 137 First sequence 112, 168 Level 89, 92 Second sequence 113, 169 Third sequence 113, 171

D

Date 173 Day 115, 174 Hour 115, 175 Minutes 115, 175 Month 115, 174 Type 115 Year 115, 174 Day 174 DB version 72 Description of menus 85 DeviceNet 121, 165 Dimensions 31 Display at start up 85 Document ID 11 Document number 5 DOL start 70, 71 Drilling plan 31, 39 Dual 176 Dual Class R 141 Dual Class S 141

Ε

Earthing Connection 47 Edition 5 Electrical connection Earthing 47 External By-Pass 45 Main circuit 43 Programmable inputs 50 Programmable output relay K4 52 Programmable output relay K5 52 Programmable output relay K6 53 PTC input 53, 54 Start and Stop 48 Supply voltage and control circuit 47 Enclosure sizes 39 End Volt 91, 136, 137 End voltage 22, 89, 91, 92, 136 Environmental influence 26 Event 72 Event log 23, 72 Ext ByPass 88, 90, 151

Extended start range 22, 139 Extended stop range 22, 139 External By-Pass 18, 92, 151 Connection 45 Contactor 88, 90 External By-Pass contactor 45 External control voltage 49 External keypad 21

F

Fans 21 Fault 64 Fault Supervision 23 Faults 102, 180 Faults indication 181 FB Fault Op 102, 154 Fieldb Addr 110, 166 Fieldb Ctrl 110, 164 Fieldb Type 110, 165 Fieldbus 21, 110, 121 Address 166 Communication 23 Connection 56 Control 110, 164 Fault 183 Type 110, 165 Fieldbus communication 23 Fieldbus fault Type of operation 102, 154 Fieldbusplug 121 First programmable input 104 First sequence parameters 112 Freq F Op 102 Frequency 27, 72 Frequency fault 182 Freq F Op 155 Type of operation 102, 155 Frequency out of range 23 Function earth 47 Functional Settings 69, 78, 92 Functions 22 Fuse 27

Η

Hardware 21 Hardware inputs control 21 Heat sink over-temperature fault 182 Type of operation 102, 155 High current Type of operation 99 High current protection 22, 99, 148, 186 Type of operation 149 High current warning 22, 152 High current warning level 101, 152 High I 99, 148 High I Op 99, 149 HMI 63 Holding circuit 48 Hour 115, 175 HS Temp Op 102, 155 Human-Machine Interface 63 Humidity 26 Hydraulic Pump 87

I

In Line *43* In0 *104*, *112*, *157* In1 *105*, *112*, *157* Industrial IT 25 Init Volt 91, 135 Init Volt1 168 Init Volt2 169 Init Volt3 170 Initial voltage 22, 89, 91, 92, 135 First sequence 112, 168 Second sequence 113, 169 Third sequence 113, 170 Inputs 104 Inside Delta 43 Insulation 27 Internal control voltage 48 Internal faults 184 Internal softstarter fault 23

J

Jog 23, 70, 71

Κ

Keypad 21, 64, 67 Locking 67 Password 23, 66, 173 Status 86 Unlocking 67 Kick Level 92, 93, 138 Kick Start 22, 92, 93, 138 Kick Start Level 92, 93, 138 Kick Start Time 93, 138 Kick StartTime 92 Kick Time 92, 93, 138 Kick-current fault 23

L

Language 114, 172 LCD 17, 64 LCD Auto Off 115, 172 LCD display automatic switch off 172 LED 17, 64 Line side 43 Line side Fault 182 Line Voltage 72 LOCAL CONTROL 18 Local Control menu 70 Lock R Lev 143 Lock R Op 97, 144 Lock R Time 97, 144 Locked Rotor 97, 143 Locked rotor Time 97 Type of operation 97 Locked rotor level 97 Locked rotor protection 22, 97, 143, 186 Level 97, 143 Time 97, 144 Trip level 143 Type of operation 97, 144 Low current warning 22, 101, 152 Level 101, 153 LV Board No 72

М

MAC Address 72 Main circuit 17 connection 43 Maintenance 125 Markings 24

Index

Menu tree 68 Menus, description 85 Minimum distance to wall/front 38 Minimum enclosure sizes 39 Minutes 115, 175 Mixer 87 Modbus 121 Month 174 Motor overload protection 22, 95, 140 OL Class 88, 140 OL Op 95, 142 Overload class 18, 95 Run class 96 Start class 96 Type of operation 95, 142 Motor overload warning 22, 153 Motor side 43 Motor sound 180 Motor temperature 85 Motor underload protection 22, 145 Mounting 37

Ν

Navigation keys 64 No of Seq 111, 167 No. Of Starts 72 Non closing by-pass contactor 23 Non conducting SCR 23, 182 Non conducting thyristor fault 182 Non opening by-pass contactor 23

0

OL Class 88, 91, 95, 96, 140 OL Class R 96 OL Op 95, 142 Open circuit motor side 23 Operation Mode 69 Output relay K4 106 Output relay K5 106 Output relay K6 107, 109 Output relays 27 Outputs 106, 108 Overload 95, 112, 140 Overload Class 88 Overload class 18, 91, 95, 140 Dual type, run class 141 Dual type, start class 141 Overload protection type of operation 142 Overload run class 96 Overload start class 96 Overload type of operation 95 Overload warning 153 Overload warning level 101, 153 Over-temperature heat sink 23 Overview 21

Ρ

P hp 72 P kW 72 Password 66, 173 Password, setting 66 Ph Imb Lev 147 Ph Imb Op 99 Ph Loss Op 102, 154 Ph Rev Op 150 Phase Imb 99, 147 Phase Imb Op 148

Phase imbalance 99 Level 99 Type of operation 99 Phase imbalance protection 22, 99, 147, 186 Level 99, 147 Type of operation 148 Phase L1 72 Phase L2 72 Phase L3 72 Phase loss 23 Phase loss fault 181 Type of operation 102, 154 Phase Rev 100, 149 Phase reversal 100 Type of operation 100 Phase reversal protection 22, 100, 149, 186 Type of operation 100, 150 Phase seq. 72 Pollution degree 26 Presentation Set 172 Presentation Settings 114 Presentation settings 69, 78, 114 Profibus DP 121 Programmable inputs 27, 104, 157 Connection 50 Programmable output relay K4 52, 106, 159 Connection 52 Programmable output relay K5 52, 106, 159 Connection 52 Programmable output relay K6 53, 107, 109, 159 Connection 53 Programmable software output V7 107, 161 Protection 22, 26, 64, 78 Protection indication 185 Protections 95 PTC 150, 151 PTC Op 100, 151 PTC protection 22, 100, 150, 187 Connection 53, 54 Type of operation 100, 151

Q

Q kVAr *72*

R

Range Max 163 Real time clock 23, 85 Relay K4 52, 106, 159 Relay K5 52, 106, 159 Relay K6 53, 107, 109, 159 Requirements 12 Reset all settings 69, 78, 117 Run Time 72

S

S kVA 72 SCR overload protection 22, 101 SCR overload warning 154 SCR SC Op 103, 156, 161, 162 SCR shorted 181 SCR temperature 86 Second programmable input 105 Second sequence parameters 113 Selection keys 64 Sequence start 22, 111 First sequence setting current 111 Function of first programmable input 112

Function of second programmable input 112 Number of sequences 111, 167 Second sequence setting current 111 Third sequence setting current 112 Service settings 69, 116 Setting current 88, 131 First sequence 112, 168 Second sequence 113, 170 Third sequence 113, 171 Setting le 18, 65, 88, 90, 92, 131 Settings 77 Settings menu 69 Shorted SCR 181 Softstarter types 28 Software output V7 107 Specifications 26 Standard connection 17 Start 18 Start and Stop Connection 48 Start Mode 89 Start mode 92, 94, 132 Start ramp 22, 89, 91, 92, 134 First sequence 112, 167 Range 93, 139 Second sequence 113, 169 Third sequence 113, 170 Start Ramp1 167 Start Ramp2 169 Start Ramp3 170 Start range 92, 93, 139 Start up faults 181 Start/Stop 22, 70, 92 Circuits, connection 17 Status Information menu 72 Step down 91, 136 Step down voltage 22, 89, 92, 136 Stop Mode 89 Stop mode 92, 94, 133 Stop Ramp Range 139 Stop ramp 22, 89, 91, 92, 135 Range 92, 93, 139 Stop range 92, 93, 139 Storage 26, 37 Supply voltage 17, 27 Supply voltage and control circuit, connection 47 SW Outp V7 107, 161 SW Ver. CU 72 SW Ver. FU 72 SW Ver. KP 72

Т

Technical data 27 Temperature 26 Thermistor 21 Third sequence parameters 113 Thyristor overload protection 187 Thyristor overload warning 22, 101, 154 Thyristor short circuit fault Type of operation 156 Time Hour 115 Time Min 175 Top level 69, 85 Torque 22 Torque control 94 Torque Limit 137 Torque limit 89, 92, 137 Trouble shooting 179

Tune Set 88 Tune torque control 134 Tune torque control (Tune T-Ctrl) 94 Tuning parameters 89 Type designation 25 Type of operation 99

U

Uin status Underl Lev *98*, Underl Op *98*, Underl Time *98*, Underload *98*, Level *98* Time *98*, *146* Type of operation *98*, *145*, Level *98*, Time *98*, *145* Time *98*, *146* Type of operation *98*, Unlocking the keypad Unpacking

W

Wa I=H Lev 101, 152 Wa I=L Lev 101, 153 Wa OL Lev 101, 153 Warn I=High 101, 152 Warn I=Low 101, 152 Warn OL 101, 153 Warn SCR OL 101, 154 Warning 22 Warning high current Level 101 Warning low current 101 Level 101 Warning overload Level 101 Warning SCR overload 101 Warnings 101 Weights 30

Product:

ABB would appreciate your comments on this product. Please grade the following questions by selecting one alternative per category. Your answer will enables us to improve our products.

How do you grade the quality of the product?

E	xcellent		Poor	
Total impression				
Usability				
Functionality				
Human-machine interface				
Comments:		 		

How do you grade the quality of the documentation?

	Excellent		Poor
Total impression			
Layout			
Illustrations			
Readability			
Easy to find			
Content structure			
Comments:		 	

Suggestions for improvements:

Please send this report to:	
ABB Automation Products AB, Cewe-Cor S-721 61 Västerås Sweden	ntrol

ABB Automation Products AB, Cewe-Control, SE-721 61 Västerås, Sweden, Telephone +46 21 32 07 00, Telefax +46 21 12 60 01 Manual **15FC132003M0201** June 2007 ABB Automation Technologies AB, Cewe-Control