HIMatrix

Safety-Related Controller

F3 AIO 8/4 01 Manual

HIMA Paul Hildebrandt GmbH + Co KG Industrial Automation

Rev. 2.00 HI 800 161 E

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

HIMax[®], HIMatrix[®], SILworX[®], XMR[®] and FlexSILon[®] are registered trademarks of HIMA Paul Hildebrandt GmbH + Co KG.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the HIMA DVD and our website at http://www.hima.de and http://www.hima.com.

© Copyright 2013, HIMA Paul Hildebrandt GmbH + Co KG All rights reserved

Contact

HIMA contact details:

HIMA Paul Hildebrandt GmbH + Co KG

P.O. Box 1261

68777 Brühl, Germany

Phone: +49 6202 709-0 Fax: +49 6202 709-107

E-mail: info@hima.com

Revision	Revisions	Type of change		
index		technical	editorial	
1.00	Added: Configuration with SILworX, Chapter Connection Variants	Х	Х	
1.01	Deleted: Chapter <i>Monitoring the Temperature State</i> integrated in the system manual		Х	
2.00	Revised: Chapters 3.5.1, 3.5.2.1 and 4.5 Added: F3 AlO 8/4 014, SIL 4 certified according to EN 50126, EN 50128 and EN 50129, Chapter 4.1.3	Х	Х	

F3 AIO 8/4 01 Table of Contents

Ta	h		f		_	nto	nts
10	IJ	ıC	UI	·	u	HE	ะบบร

1	Introduction	5
1.1	Structure and Use of this Manual	5
1.2	Target Audience	6
1.3	Formatting Conventions	7
1.3.1 1.3.2	Safety Notes Operating Tips	7 8
2	Safety	9
2.1	Intended Use	9
2.1.1 2.1.2	Environmental Requirements ESD Protective Measures	9 9
2.2	Residual Risk	10
2.3	Safety Precautions	10
2.4	Emergency Information	10
3	Product Description	11
3.1	Safety Function	11
3.1.1	Safety-Related Analog Inputs	11
3.1.1.1	Reaction in the Event of a Fault	12
3.1.2	Line Monitoring for Digital Outputs	12
3.1.2.1	Requirements	12
3.1.2.2	Examples	12
3.2	Analog Outputs	17
3.3	Equipment, Scope of Delivery	18
3.3.1	IP Address and System ID (SRS)	19
3.4	Type Label	19
3.5	Structure	20
3.5.1	LED Indicators	21
3.5.1.1 3.5.1.2	Operating Voltage LED System LEDs	21 21
3.5.1.3	Communication LEDs	22
3.5.2	Communication	22
3.5.2.1	Connections for Ethernet Communication	22
3.5.2.2	Network Ports Used for Ethernet Communication	23
3.5.3	Reset Key	23
3.6	Product Data	24
3.6.1	Product Data F3 AIO 8/4 011 (-20 °C)	25
3.6.2 3.6.3	Product Data F3 AIO 8/4 012 (subsea / -20 °C) Product Data F3 AIO 8/4 014	25 27
3.7	Certified HIMatrix F3 AIO 8/4 01	28
4	Start-up	29
	•	
4.1	Installation and Mounting	29
4.1.1	Connecting the Analog Inputs	29

HI 800 161 E Rev. 2.00 Page 3 of 56

Table of Contents F3 AIO 8/4 01

4.1.1.1	Shunt Adapter	30
4.1.2	Connecting the Analog Outputs	30
4.1.3	Cable Plugs	31
4.1.4	Mounting the F3 AIO 8/4 01 in Zone 2	32
4.2	Configuration	33
4.3	Configuration with SILworX	33
4.3.1	Parameters and Error Codes for the Inputs and Outputs	33
4.3.2	Analog Inputs F3 AIO 8/4 01	33
4.3.2.1	Tab: Module	34
4.3.2.2	Tab: Al 8: Channels	35
4.3.3	Analog Outputs F3 AIO 8/4 01	36
4.3.3.1	Tab: Module	36
4.3.3.2	Tab: AO 4: Channels	37
4.4	Configuration with ELOP II Factory	37
4.4.1 4.4.2	Configuring the Inputs and Outputs Signals and Error Codes for the Inputs and Outputs	37 37
4.4.3	Analog Inputs F3 AIO 8/4 01	38
4.4.4	Analog Outputs F3 AlO 8/4 01	40
	9 .	
4.5 4.5.1	Connection Variants	41 41
4.5.1 4.5.2	Connecting Proximity Switches Connecting Wired Mechanical Contacts	43
4.5.2.1	Wired Mechanical Contacts with Resistance Values of 2 k Ω and 22 k Ω	43
4.5.2.2	Wired Mechanical Contacts with Resistance Values of 2.1 k Ω and 22 k Ω	44
5	Operation	45
5.1	Handling	45
5.2	Diagnosis	45
6	Maintenance	46
6.1	Faults	46
6.2	Maintenance Measures	46
6.2.1	Loading the Operating System	46
6.2.2	Proof Test	46
7	Decommissioning	47
8	Transport	48
9	Disposal	49
	Appendix	51
	Glossary	51
	Index of Figures	52
	Index of Tables	53
	Index	54

Page 4 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 1 Introduction

1 Introduction

This manual describes the technical characteristics of the device and its use. It provides information on how to install, start up and configure the module.

1.1 Structure and Use of this Manual

The content of this manual is part of the hardware description of the HIMatrix programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

HIMatrix remote I/Os are available for the programming tools SILworX and ELOP II Factory. Which programming tool can be used, depends on the processor operating system of the HIMatrix remote I/O, refer to the following table:

Programming tool	Processor operating system
SILworX	CPU OS V7 and higher
ELOP II Factory	CPU OS up to V6.x

Table 1: Programming Tools for HIMatrix Remote I/Os

In the manual, the differences are specified by using:

- Separated chapters
- Tables differentiating among the versions

i	Projects created with ELOP II Factory cannot be edited with SILworX, and vice versa!				
i	Compact controllers and remote I/Os are referred to as devices.				

HI 800 161 E Rev. 2.00 Page 5 of 56

1 Introduction F3 AlO 8/4 01

Additionally, the following documents must be taken into account:

Name	Content	Document number
HIMatrix System Manual Compact Systems	Hardware description of the HIMatrix compact systems	HI 800 141 E
HIMatrix System Manual Modular System F60	Hardware description of the HIMatrix modular system	HI 800 191 E
HIMatrix Safety Manual	Safety functions of the HIMatrix system	HI 800 023 E
HIMatrix Safety Manual for Railway Applications	Safety functions of the HIMatrix system using the HIMatrix in railway applications	HI 800 437 E
SILworX Online Help	Instructions on how to use SILworX	-
ELOP II Factory Online Help	Instructions on how to use ELOP II Factory, Ethernet IP protocol	-
SILworX First Steps	Introduction to SILworX using the HIMax system as an example	HI 801 103 E
ELOP II Factory First Steps	Introduction to ELOP II Factory	HI 800 006 E

Table 2: Additional Relevant Documents

The latest manuals can be downloaded from the HIMA website at www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the modules and systems. Specialized knowledge of safety-related automation systems is required.

Page 6 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 1 Introduction

1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics For parameters and system variables

Courier Literal user inputs

RUN Operating state are designated by capitals

Chapter 1.2.3 Cross references are hyperlinks even though they are not particularly

marked. When the cursor hovers over a hyperlink, it changes its shape.

Click the hyperlink to jump to the corresponding position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes

The safety notes are represented as described below.

These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: warning, caution, notice
- Type and source of risk
- Consequences arising from non-observance
- Risk prevention

A SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance

Risk prevention

The signal words have the following meanings:

- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

NOTE

Type and source of damage! Damage prevention

HI 800 161 E Rev. 2.00 Page 7 of 56

1 Introduction F3 AIO 8/4 01

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text corresponding to the additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

Page 8 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 2 Safety

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

This product is operated with SELV or PELV. No imminent risk results from the product itself. The use in Ex-zone is permitted if additional measures are taken.

2.1 Intended Use

HIMatrix components are designed for assembling safety-related controller systems.

When using the components in the HIMatrix system, comply with the following general requirements.

2.1.1 Environmental Requirements

Requirement type	Range of values 1)			
Protection class	Protection class III in accordance with IEC/EN 61131-2			
Ambient temperature	0+60 °C			
Storage temperature	-40+85 °C			
Pollution	Pollution degree II in accordance with IEC/EN 61131-2			
Altitude	< 2000 m			
Housing	Standard: IP20			
Supply voltage	24 VDC			
1) The values exception in the technical data apply and are decisive for devices with extended				

The values specified in the technical data apply and are decisive for devices with extended environmental requirements.

Table 3: Environmental Requirements

Exposing the HIMatrix system to environmental conditions other than those specified in this manual can cause the HIMatrix system to malfunction.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace devices.

NOTE

Device damage due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

HI 800 161 E Rev. 2.00 Page 9 of 56

2 Safety F3 AIO 8/4 01

2.2 Residual Risk

No imminent risk results from a HIMatrix system itself.

Residual risk may result from:

- Faults related to engineering
- Faults related to the user program
- Faults related to the wiring

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMatrix system is a part of the safety equipment of a site. If a device or a module fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMatrix systems from operating safely is permitted.

Page 10 of 56 HI 800 161 E Rev. 2.00

3 Product Description

The safety-related **F3 AIO 8/4 01** remote I/O is a compact system in a metal housing with 8 analog inputs and 4 analog outputs.

The remote I/O is available in various model variants for SILworX and ELOP II Factory, see Table 10.

Remote I/Os are connected to individual HIMax or HIMatrix controllers via safe**ethernet**. They are used to extend the I/O level, but are not able to run any user program by themselves.

The remote I/O is suitable for mounting in Ex-zone 2, see Chapter 4.1.4.

The device is TÜV-certified for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 and PL e (EN ISO 13849-1) and SIL 4 (EN 50126, EN 50128 and EN 50129).

Further safety standards, application standards and test standards are specified in the certificates available on the HIMA website.

3.1 Safety Function

The remote I/O is equipped with safety-related analog inputs. The input values on the inputs are safely transmitted to the connected controller via safe**ethernet**. The outputs are safely assigned their values by the connected controller via safe**ethernet**.

3.1.1 Safety-Related Analog Inputs

The remote I/O is equipped with 8 analog inputs with transmitter supplies for the unipolar measurement of voltages, referenced to L-.

The remote I/O is intended to measure the voltage on the inputs. To measure the current on the inputs, the inputs must be connected with external shunt adapters, see Table 4.

Only shielded cables must be connected to the analog inputs. Each analog input must be connected to a twisted pair of wires. The shielding must be connected to the remote I/O and the sensor housing and earthed of one end to the remote I/O side to form a Faraday cage.

i

Unused input channels must each be short-circuited to the ground (L-).

The following input values are available:

Input channels	Polarity	Current Voltage	Range of values in the application	Safety-related accuracy
8	Unipolar	0+10 V	02000	2%
8	Unipolar	0/420 mA	01000 ¹⁾ 02000 ²⁾	2% 2%

with external Z 7301 shunt adapter, see Chapter 4.1.1.1

Table 4: Input Values for the Analog Inputs

HI 800 161 E Rev. 2.00 Page 11 of 56

with external Z 7302 or Z 7309 shunt adapter, see Chapter 4.1.1.1

If an open-circuit occurs during voltage measurement (the line is not monitored), any input signals are processed on the high-resistance inputs. The value resulting from this fluctuating input voltage is not reliable; with voltage inputs, the channels must be terminated with a 10 k Ω resistor. The internal resistance of the source must be taken into account.

For a current measurement with the shunt connected in parallel, the 10 k Ω resistor is not required.

The analog inputs are designed to retain the metrological accuracy for 10 years. A proof test must be performed every 10 years.

3.1.1.1 Reaction in the Event of a Fault

If the device detects a fault on an analog input, the *Al.Error Code* parameter is set to a value greater than 0. If a device fault occurred, the SILworX system parameter *Module Error Code* is set to a value greater than 0, or if ELOP II Factory is used, the *Module.Error Code* signal is set to a value greater than 0.

In both cases, the device activates the FAULT LED.

In addition to the analog value the the error code must be evaluated. The analog value must be configured to ensure a safety-related reaction.

The error code allows the user to configure additional fault reactions in the user program.

3.1.2 Line Monitoring for Digital Outputs

The analog inputs (AI) of the F3 AIO 8/4 01 can also be used to monitor the line for open-circuits and short-circuits of digital outputs of other HIMatrix controllers (line monitoring). To this end, the transmitter supply must be set to 26 V. To do so, set the *Transmitter Voltage[01]* parameter in SILworX and ELOP II Factory to 2, see Table 29 and Table 33.

3.1.2.1 Requirements

Using HIMatrix devices with analog inputs, the digital outputs of any HIMatrix controller can be monitored under the following conditions:

- The transmitter supply of analog inputs exists,
- An external shunt can be connected to the analog inputs.

These conditions apply for all systems within the HIMatrix family, from compact to modular systems.

3.1.2.2 Examples

The digital outputs of the F2 DO 16 01 or F20 can be monitored with the analog inputs of the F3 AlO 8/4 01.

The analog inputs of the F3 AlO 8/4 01 can monitor the digital outputs of the DIO 24/16 01 (modular system).

Figure 1 shows how the lines connecting a digital output (DO) to an actuator (e.g., solenoid valve) can be monitored for open-circuits and short-circuits.

 $\overset{\centerdot}{1} \qquad \text{The connection must be adapted to the field devices used and the functionality checked accordingly!}$

Page 12 of 56 HI 800 161 E Rev. 2.00

Circuitry:

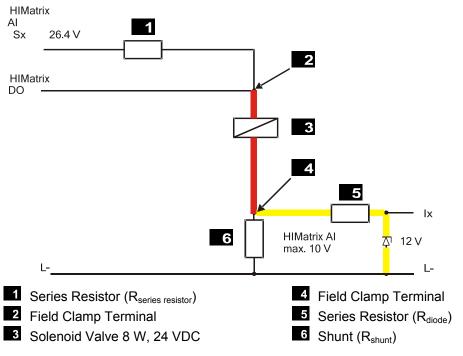


Figure 1: Circuitry for Line Monitoring

Line monitoring range (short-circuits and open-circuits)

Protective circuit with short-circuit

Examples of how to configure line monitoring for the digital output DO (circuit with solenoid valve 8 W 24 VDC):

Resistance values:					
Resistor: $R_{\text{series resistor}}$ 1.6 k Ω					
Solenoid valve resistance:	R _{solenoid valve}	75 Ω			
Shunt:	R _{shunt}	10 Ω			

Table 5: Examples of Line Monitoring - Resistance Values

Voltage values:	
Transmitter voltage:	26.4 V
Output voltage DO during normal operation:	24 V
Output voltage DO with a short-circuit:	26.8 V
Voltage drop on the solenoid valve:	21 V
Switching voltage of the Z-diode:	12 V

Table 6: Examples of Line Monitoring - Voltage Values

HI 800 161 E Rev. 2.00 Page 13 of 56

Measured values for voltage on AI with line monitoring of DO							
Voltage drop	p Voltage drop Values for AI						
R _{series resistor}	R _{solenoid valve}	R _{shunt}	(with FSx000 resolution)				
			FS1000	FS2000			
Output DO False or	0						
(output DO is deactive	/ated; de-energized s	tate)					
25.08 V	1.15 V	0.15 V	14	28			
Output DO True or 1 (output DO activated)							
-	21 V	3 V	300	600			
Break in the field wir	Break in the field wiring						
-	-	0 V	0	0			
Short-circuit in the field wiring or actuator							
-	0 V	26.8 V	1000 ¹⁾	2000 ¹⁾			
maximum resolution of the analog inputs AI with voltage limited to 12 V by Z-diode							

Table 7: Voltage Values with Line Monitoring of DO

Illustration of Figure 1 and Table 7

1. Open-Circuit:

1

The supply voltage of the series resistor (transmitter voltage) fluctuates within a tolerance range, see Specifications in Table 18. For this reason, the voltage drops on the resistors can change slightly. Within the fluctuation range, a measurable voltage drop is definitely still detected on shunt R_{shunt} .

The series resistor was dimensioned such that when DO = FALSE, the voltage drop on the solenoid valve is as low as possible (valve is slightly warmed up) and the voltage drop on the shunt is still measurable.

The shunt R_{shunt} was measured with dependence on the solenoid valve resistance such that if the output DO is activated (DO = TRUE), the voltage drop on the solenoid valve is higher than the switching threshold of the solenoid valve, i.e., the coil of the solenoid valve is energized.

Additionally, the shunt R_{shunt} is designed such that with any switching state of the output DO (TRUE or FALSE), a measurable voltage drop results (values for AI > 10, see Table 7).

On the other hand, if field wiring breakage occurs within the red-colored area, voltage drops are no longer present on the shunt.

An open-circuit within the red-colored area (see Figure 1) can be monitored through the voltage drop on the shunt R_{shunt} , i.e., the input value of AI, see Table 7.

To allow open-circuit monitoring, the value of Al must be evaluated in the logic of the user program.

Connect the series resistor R_{series resistor} and the shunt R_{shunt} directly to the terminals of the controller or remote I/O to maximize the monitored line area.

Page 14 of 56 HI 800 161 E Rev. 2.00

2. Short-Circuit:

An short-circuit within the actuator circuitry (including the actuator) results in a high voltage drop (≤ output voltage of DO) through the shunt, which causes the short-circuit to be detected (maximum resolution of AI, see Table 7). The overvoltage protection of the analog inputs is activated at approximately 15 V.

A protective circuit consisting of a Z-diode and series resistor must be implemented to avoid an overload of the internal overvoltage protection.

NOTE

To protect the input multiplexer of the analog inputs from overload, a protective circuit consisting of Z-diode and a series resistor must be connected within the input circuit in parallel to the existing shunt

The configuration of the Z-diode with series resistor depends on the overvoltage protection threshold and must be set up to ensure that the HIMatrix overvoltage protection is <u>not</u> activated if a short-circuit occurs.

Configuration example for short-circuits:		
Shunt:	R _{shunt}	10 Ω
Solenoid valve resistance:	R _{solenoid valve}	75 Ω
Maximum output voltage of the digital output DO	U _{max}	26.8 V

Table 8: Example of Short-Circuit

- Z-diode with switching voltage of 12 V
- Analog input with operating range of 0...10 V
- Overvoltage protection in the HIMatrix with input voltage > 15 V

Normal operation (no short-circuit):

$$U_{\text{max}} = U_{\text{solenoid valve}} + U_{\text{shunt}} = 26.8 \text{ V} = 23.65 \text{ V} + 3.15 \text{ V}$$

The voltage U_{shunt} is also present on the protective circuit consisting of Z-diode and series resistor.

The Z-diode does not switch on at 3.15 V, i.e., the voltage drop of 3.15 V on the shunt is present on the analog input.

Short-circuit:

$$U_{\text{max}} = U_{\text{solenoid valve}} + U_{\text{shunt}} = 26.8 \text{ V} = 0 \text{ V} + 26.8 \text{ V}$$

If a short-circuit occurs in the external circuit (actuator or line), the voltage from DO is dropped completely at the shunt.

The switching threshold of the overvoltage protection of AI is approximately 15 V.

The Z-diode should become conductive at 12 V such that no more than 12 V is present on Al and the entire scaling range of Al is available.

The maximum voltage drop U_{diode} on the series resistor R_{diode} of the Z-diode results from:

$$U_{diode} = 26.8 \text{ V} - 12 \text{ V} = 14.8 \text{ V}$$

HI 800 161 E Rev. 2.00 Page 15 of 56

The current through the Z-diode should be limited to 20 mA (specification of the Z-diode). This results in a minimum value for the series resistor of:

 R_{diode} = 14.8 V / 20 mA = 740 Ω

The value for R_{diode} can be set to 1 $K\Omega.$

This resistance limits the maximum current through the Z-diode to approximately 15 mA.

A short-circuit within the red-colored area (see circuit diagram) can be monitored through the voltage drop on the shunt R_{shunt} , i.e., the input value of AI, see Table 7.

To allow short-circuit monitoring, the value of AI must be evaluated in the logic of the user program.

Page 16 of 56 HI 800 161 E Rev. 2.00

3.2 Analog Outputs

The remote I/O is equipped with 4 analog outputs. These outputs are not safety-related, but all together they can be shut down safely thanks to the configuration in the user program.

To achieve SIL 3, the output values must be read back via safety-related analog inputs and evaluated in the user program. Reactions to incorrect output values must also be specified in the user program.

NOTE

The analog outputs may <u>only</u> be used as safety-related outputs, if the output values are read back to safety-related analog inputs and evaluated in the user program.

To configure the safe reaction, set the 4 *Channel Used [BOOL]* -> system parameters to FALSE (SILworX) or the 4 *AO[1..4].Used* system signals to FALSE (ELOP II Factory). This appears internal safety switches, ensuring that no output signal is output.

Alternatively, the safety reaction can be triggered using the *Emergency Stop* system variable.

Application example for safety-related analog outputs

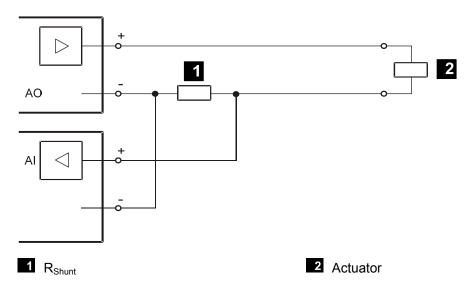


Figure 2: Application Example for Safety-Related Analog Outputs

The following output values are available:

Range of values in the application	Output current
0	0.0 mA
2000	20.0 mA

Table 9: Output Values of the Analog Outputs

The analog outputs are designed to retain the metrological accuracy for 10 years. A proof test must be performed every 10 years.

HI 800 161 E Rev. 2.00 Page 17 of 56

3.3 Equipment, Scope of Delivery

The following table specifies the available remote I/O variants:

Designation	Description
F3 AIO 8/4 01	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs), Operating temperature: 0+60 °C,
	for ELOP II Factory programming tool
F3 AIO 8/4 011	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs),
(-20 °C)	Operating temperature: -20+60 °C,
	for ELOP II Factory programming tool
F3 AIO 8/4 012 (subsea / -20 °C)	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs), Operating temperature: -20+60 °C,
	subsea type approval according to ISO 13628-6, for ELOP II Factory programming tool
F3 AIO 8/4 014	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs), Operating temperature: -25+70 °C (temperature class T1), Vibration and shock tested according to EN 50125-3 and EN 50155, class 1B according to IEC 61373, for ELOP II Factory programming tool
F3 AIO 8/4 01	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs),
SILworX	Operating temperature: 0+60 °C,
	for SILworX programming tool
F3 AIO 8/4 011	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs),
SILworX	Operating temperature: -20+60 °C,
(-20 °C)	for SILworX programming tool
F3 AIO 8/4 012	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs),
SILworX	Operating temperature: -20+60 °C,
(subsea / -20 °C)	subsea type approval according to ISO 13628-6,
E0 AIO 0/4 04 4	for SILworX programming tool
F3 AIO 8/4 014 SILworX	Remote I/O (8 analog inputs, 4 non-safety-related analog outputs),
SILWOIX	Operating temperature: -25+70 °C (temperature class T1), Vibration and shock tested according to EN 50125-3 and EN 50155, class 1B according to IEC 61373,
	for SILworX programming tool

Table 10: Available Variants

Page 18 of 56 HI 800 161 E Rev. 2.00

3.3.1 IP Address and System ID (SRS)

A transparent label is delivered with the device to allow one to note the IP address and the system ID (SRS for system rack slot) after a change.

IP___.__. SRS___._.

Default value for IP address: 192.168.0.99

Default value for SRS: 60 000.200.0 (SILworX)

60 000.0.0 (ELOP II Factory)

The label must be affixed such that the ventilation slots in the housing are not obstructed.

Refer to the First Steps manual of the programming tool for more information on how to modify the IP address and the system ID.

3.4 Type Label

The type plate contains the following details:

- Product name
- Bar code (1D or 2D code)
- Part no.
- Production year
- Hardware revision index (HW Rev.)
- Firmware revision index (FW Rev.)
- Operating voltage
- Mark of conformity

Figure 3: Sample Type Label

HI 800 161 E Rev. 2.00 Page 19 of 56

3.5 Structure

This chapter describes the layout and function of the remote I/Os, and their communication via safe**ethernet**.

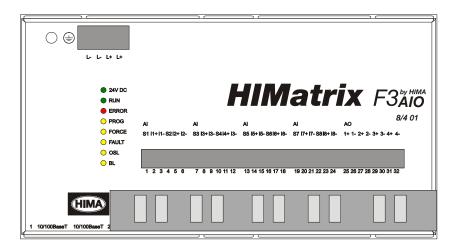


Figure 4: Front View

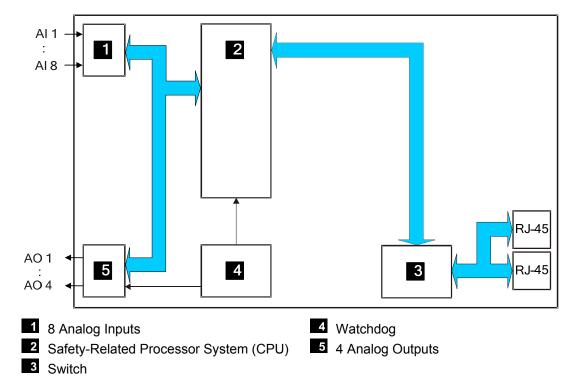


Figure 5: Block Diagram

Page 20 of 56 HI 800 161 E Rev. 2.00

3.5.1 LED Indicators

The light-emitting diodes (LEDs) indicate the operating state of the remote I/O. The LEDs are classified as follows:

- Operating voltage LED
- System LEDs
- Communication LEDs

3.5.1.1 Operating Voltage LED

LED	Color	Status	Description
24 VDC	Green	On	24 VDC operating voltage present
		Off	No operating voltage

Table 11: Operating Voltage LED

3.5.1.2 System LEDs

While the system is being booted, all LEDs are lit simultaneously.

LED	Color	Status	Description
RUN	Green	On	Device in RUN, normal operation
		Blinking	Device in STOP
			A new operating system is being loaded.
		Off	The device is not in the RUN state.
ERROR	Red	On	The device is in the ERROR STOP state.
			Internal fault detected by self-tests, e.g., hardware faults or cycle time overrun.
			The processor system can only be restarted with a command from the PADT (reboot).
		Blinking	If ERROR blinks and all others LEDs are lit simultaneously, the boot loader has detected an operating system fault in the flash memory and waits for a new operating system to be loaded.
		Off	No faults detected.
PROG	Yellow	On	A new configuration is being loaded into the device.
		Blinking	The device switches from INIT to STOP
			A new operating system is being loaded into the flash ROM.
		Off	No configuration or operating system is being loaded.
FORCE	Yellow	Off	The FORCE LED of a remote I/O is not functioning. The FORCE LED of the associated controller serves to signal the forcing of a remote I/O.
FAULT	Yellow	On	The loaded configuration is not valid.
			The new operating system is corrupted (after OS download).
		Blinking	Fault while loading a new operating system
			One or multiple I/O faults occurred.
		Off	None of the described faults occurred.
OSL	Yellow	Blinking	Operating system emergency loader active.
		Off	Operating system emergency loader inactive.
BL	Yellow	Blinking	OS and OSL binary defective or hardware fault, INIT_FAIL.
		Off	None of the described faults occurred.

Table 12: System LEDs

HI 800 161 E Rev. 2.00 Page 21 of 56

3.5.1.3 Communication LEDs

All RJ-45 connectors are provided with a small green and a yellow LEDs. The LEDs signal the following states:

LED	Status	Description
Green	On	Full duplex operation
	Blinking	Collision
	Off	Half duplex operation, no collision
Yellow	On	Connection available
	Blinking	Interface activity
	Off	No connection available

Table 13: Ethernet Indicators

3.5.2 Communication

The remote I/O communicates with the associated controller via safeethernet.

3.5.2.1 Connections for Ethernet Communication

Property	Description	
Port	2 x RJ-45	
Transfer standard	10BASE-T/100BASE-Tx, half and full duplex	
Auto negotiation	Yes	
Auto crossover	Yes	
IP address	Freely configurable ¹⁾	
Subnet mask	Freely configurable ¹⁾	
Supported protocols	 Safety-related: safeethernet Standard protocols: Programming and debugging tool (PADT), SNTP 	
1) The general rules for assigning IP address and subnet masks must be adhered to.		

Table 14: Ethernet Interfaces Properties

The two RJ-45 connectors with integrated LEDs are located on the bottom left-hand side of the housing. Refer to Chapter 3.5.1.3 for a description of the LEDs' function.

The connection parameters are read based on the MAC address (media access control address) defined during manufacturing.

The MAC address for the remote I/O is specified on a label located above the two RJ-45 connectors (1 and 2).

MAC 00:E0:A1:00:06:C0

Figure 6: Sample MAC Address Label

The remote I/O is equipped with an integrated switch for Ethernet communication. For further information on the integrated switch and safe**ethernet**, refer to Chapter *Communication* of the system manual for compact systems (HI 800 141 E).

Page 22 of 56 HI 800 161 E Rev. 2.00

3.5.2.2 Network Ports Used for Ethernet Communication

UDP ports	Use
8000	Programming and operation with the programing tool
8001	Configuration of the remote I/O using the PES (ELOP II Factory)
8004	Configuration of the remote I/O using the PES (SILworX)
6010	safeethernet
123	SNTP (time synchronization between PES and remote I/O, PES and external devices)

Table 15: Network Ports in Use

3.5.3 Reset Key

The remote I/O is equipped with a reset key. The key is only required if the user name or password for administrator access is not known. If only the IP address set for the remote I/O does not match the PADT (PC), the connection can be established with a Route add entry on the PC.

i

Only the model variants without protective lacquer are equipped with a reset key.

The key can be accessed through a small round hole located approximately 5 cm from the upper left-hand side of the housing. The key is engaged using a suitable pin made of insulating material to avoid short-circuits within the remote I/O.

The reset is only effective if the remote I/O is rebooted (switched off and on) while the key is simultaneously engaged for at least 20 s. Engaging the key during operation has no effect.

Properties and behavior of the remote I/IO after a reboot with engaged reset key:

- Connection parameters (IP address and system ID) are set to the default values.
- All accounts are deactivated except for the administrator default account with empty password.

After a new reboot without the reset key engaged, the connection parameters (IP address and system ID) and accounts become effective.

- Those configured by the user.
- Those valid prior to rebooting with the reset key engaged, if no changes were performed.

HI 800 161 E Rev. 2.00 Page 23 of 56

3.6 Product Data

General	
Response time	≥ 20 ms
Ethernet interfaces	2 x RJ-45, 10BASE-T/100BASE-Tx with integrated switch
Operating voltage	24 VDC, -15+20 %, r _{PP} ≤ 15 %, from a power supply unit with safe insulation in accordance with IEC 61131-2
Current input	max. 0.8 A (with maximum load) Idle: approx. 0.4 A at 24 V
Fuse (external)	10 A time-lag (T)
Back-up battery	None
Operating temperature	0+60 °C
Storage temperature	-40+85 °C
Type of protection	IP20
Max. dimensions (without plug)	Width: 207 mm (with housing screws) Height: 114 mm (with fixing bolt) Depth: 97 mm (with earthing rail)
Weight	approx. 1 kg

Table 16: Product Data

Analog inputs		
Number of inputs	8 (non-galvanically separated)	
Nominal range	0+10 VDC,	
	0/4+20 mA with 500 Ω shunt	
Operating range	-0.1+11.5 VDC,	
	-0.4+23 mA with 500 Ω shunt	
Input resistance	> 2 MΩ	
Source resistance input	≤ 500 Ω	
of the input signal		
Digital resolution	12-bit	
Measurement accuracy at	±0.1 % of final value	
25 °C, max.		
Metrological accuracy on full	±0.5 % of final value	
temperature, max.		
Temperature coefficient, max.	±0.011 %/K of final value	
Safety-related accuracy, max.	±2 % of final value	
Measured value refresh	once per cycle of the controller	
Sampling time	ca. 45 µs	

Table 17: Specifications for the Analog Inputs

Page 24 of 56 HI 800 161 E Rev. 2.00

Supply outputs		
Number of supply outputs	8	
Nominal voltages	8.2 VDC / 26 VDC, switchable	
Tolerance	±5 %	
Safely monitored limits Range: 8.2 V	7.68.8 V, (tolerance range: 7.39.1 V)	
Range 26 V	24.327.7 V, (tolerance range: 24.028.0 V)	
Current limiting	> 200 mA, the output is switched off	

Table 18: Specifications for the Transmitter Supply

Analog outputs		
Number of outputs	4 non-galvanically separated, non-safety-related, common safe shutdown	
Nominal value	420 mA	
Operating value	021 mA	
Digital resolution	12-bit	
Load impedance	max. 600 Ω	
Measurement accuracy at 25 °C, max.	±0.1 % of final value	
Metrological accuracy on full temperature, max.	± 0.5 % of final value	
Temperature coefficient, max.	±0.011 %/K of final value	
Safety-related accuracy, max.	±1 % of final value	

Table 19: Specifications for the Analog Outputs

3.6.1 Product Data F3 AIO 8/4 011 (-20 °C)

The HIMatrix F3 AIO 8/4 011 (-20 °C) model variant is intended for use at the extended temperature range of -20...+60 °C. The electronic components are coated with a protective lacquer.

F3 AIO 8/4 011	
Operating temperature	-20+60 °C
Weight	approx. 1 kg

Table 20: Product Data of F3 AIO 8/4 011 (-20 °C)

3.6.2 Product Data F3 AIO 8/4 012 (subsea / -20 °C)

The HIMatrix F3 AlO 8/4 012 (subsea / -20 °C) model variant is intended for subsea-use according to ISO 13628 Part 6: Subsea production control systems. The electronic components are coated with a protective lacquer. The housing of the remote I/O is made of V2A stainless steel; the remote I/O is intended for mounting on a mounting plate. The housing is equipped with a massive aluminum plate, see Figure 7. Figure 8 specifies the centre hole distances.

HI 800 161 E Rev. 2.00 Page 25 of 56

F3 AIO 8/4 012				
Housing material	V2A stainless steel			
Operating temperature	-20+60 °C			
ISO 13628-6: 2006	Shock and vibration tests according to Level Q1 and Q2. Random vibration test, ESS (Environmental stress screening)			
Max. dimensions (without connectors and aluminum plate)	Width: 207 mm (with housing screws) Height: 114 mm (with fixing bolt) Depth: 97 mm (with earthing rail)			
Dimensions: Aluminum plate (W x H x D)	(200 x 160 x 6) mm			
Weight	approx. 1.4 kg			

Table 21: Product Data F3 AIO 8/4 012 (subsea / -20 °C)

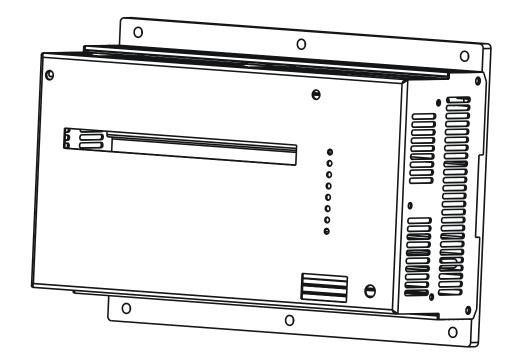


Figure 7: HIMatrix F3 AIO 8/4 012 with Aluminum Plate

Page 26 of 56 HI 800 161 E Rev. 2.00

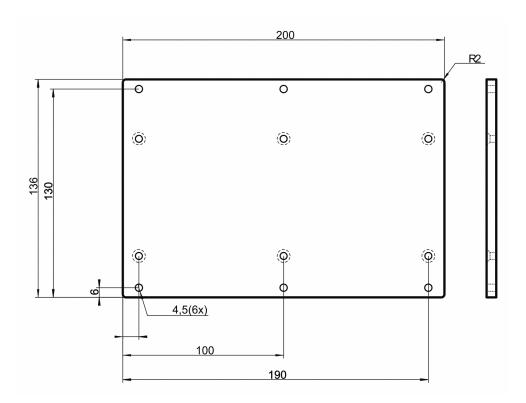


Figure 8: Aluminum Plate with Dimensions

3.6.3 Product Data F3 AIO 8/4 014

The F3 AIO 8/4 014 model variant is intended for use in railway applications. The electronic components are coated with a protective lacquer.

F3 AIO 8/4 014	
Operating temperature	-25+70 °C (temperature class T1)
Weight	approx. 1 kg

Table 22: Product Data of F3 AIO 8/4 014

The remote I/O F3 AIO 8/4 014 meets the conditions for vibrations and shock test according to IEC 61373, category 1, class B.

HI 800 161 E Rev. 2.00 Page 27 of 56

3.7 Certified HIMatrix F3 AIO 8/4 01

HIMatrix F3 AIO 8/4 01				
CE	EMC, ATEX Zone 2			
TÜV	IEC 61508 1-7:2000 up to SIL 3			
	IEC 61511:2004			
	EN ISO 13849-1:2008 up to Cat. 4 und PL e			
UL Underwriters Laboratories	ANSI/UL 508, NFPA 70 – Industrial Control Equipment			
Inc.	CSA C22.2 No.142			
	UL 1998 Software Programmable Components			
	NFPA 79 Electrical Standard for Industrial Machinery			
	IEC 61508			
FM Approvals	Class I, DIV 2, Groups A, B, C and D			
	Class 3600, 1998			
	Class 3611, 1999			
	Class 3810, 1989			
	Including Supplement #1, 1995			
	CSA C22.2 No. 142			
	CSA C22.2 No. 213			
TÜV CENELEC	Railway applications			
	EN 50126: 1999 up to SIL 4			
	EN 50128: 2001 up to SIL 4			
	EN 50129: 2003 up to SIL 4			

Table 23: Certified HIMatrix F3 AIO 8/4 01

Page 28 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 4 Start-up

4 Start-up

To start up the remote I/O, it must be mounted, connected and configured in the programming tool.

4.1 Installation and Mounting

The remote I/O is mounted on a 35 mm DIN rail or a mounting plate in case of the F3 AlO 8/4 012.

When laying cables (long cables, in particular), take appropriate measures to avoid interference, e.g., by separating the signal lines from the power lines.

When dimensioning the cables, ensure that their electrical properties have no negative impact on the measuring circuit.

4.1.1 Connecting the Analog Inputs

Only shielded cables must be connected to the analog inputs. Each analog input must be connected to a twisted pair of wires. The shielding must be connected to the remote I/O and the sensor housing and earthed on the remote I/O side to form a Faraday cage.

Use the following terminals to connect the analog inputs:

Terminal	Designation	Function (analog inputs AI)		
1	S1	Transmitter supply 1		
2	I1+	Analog input 1		
3	I1-	Ground		
4	S2	Transmitter supply 2		
5	12+	Analog input 2		
6	12-	Ground		
Terminal	Designation	Function (analog inputs AI)		
7	S3	Transmitter supply 3		
8	13+	Analog input 3		
9	13-	Ground		
10	S4	Transmitter supply 4		
11	4+	Analog input 4		
12	14-	Ground		
Terminal	Designation	Function (analog inputs AI)		
13	S5	Transmitter supply 5		
14	15+	Analog input 5		
15	15-	Ground		
40		Cround		
16	S6	Transmitter supply 6		
16	S6 I6+			
		Transmitter supply 6		
17	16+	Transmitter supply 6 Analog input 6		
17 18	l6+ l6-	Transmitter supply 6 Analog input 6 Ground		
17 18 Terminal	I6+ I6- Designation	Transmitter supply 6 Analog input 6 Ground Function (analog inputs AI)		
17 18 Terminal 19	I6+ I6- Designation S7	Transmitter supply 6 Analog input 6 Ground Function (analog inputs AI) Transmitter supply 7		
17 18 Terminal 19 20	I6+ I6- Designation S7 I7+	Transmitter supply 6 Analog input 6 Ground Function (analog inputs AI) Transmitter supply 7 Analog input 7		
17 18 Terminal 19 20 21	I6+ I6- Designation S7 I7+ I7-	Transmitter supply 6 Analog input 6 Ground Function (analog inputs AI) Transmitter supply 7 Analog input 7 Ground		

Table 24: Terminal Assignment for the Analog Inputs

HI 800 161 E Rev. 2.00 Page 29 of 56

4 Start-up F3 AIO 8/4 01

4.1.1.1 Shunt Adapter

The shunt adapter is a plug-in module for the analog inputs of the safety-related remote I/O F3 AIO 8/4 01.

Five variants are available:

Model	Equipment			
Z 7301	250 $Ω$ shunt			
Z 7302	500 Ω shunt			
Z 7306	■ 250 Ω shunt			
	 Overvoltage protection 			
	HART series resistor (current limiting)			
Z 7308	 Voltage divider 			
	Overvoltage protection			
Z 7309 ¹⁾	500 Ω shunt			
1) If proximity switches are connected, see Chapter 4.5.1				

Table 25: Shunt Adapter

Refer to the corresponding manuals for further information on the shunt adapters.

4.1.2 Connecting the Analog Outputs

Use the following terminals to connect the analog outputs:

Terminal	Designation	Function (analog outputs AO)			
25	1+	Analog output 1			
26	1-	Ground output 1			
27	2+	Analog output 2			
28	2-	Ground output 2			
29	3+	Analog output 3			
30	3-	Ground output 3			
31	4+	Analog output 4			
32	4-	Ground output 4			

Table 26: Terminal Assignment for the Analog Outputs

Page 30 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 4 Start-up

4.1.3 Cable Plugs

Cable plugs attached to the pin headers of the devices are used to connect to the power supply and to the field zone. The cable plugs are included within the scope of delivery of the HIMatrix devices and modules.

The devices power supply connections feature the following properties:

Connection to the power supply			
Cable plugs	Four poles, screw terminals		
Wire cross-section	0.22.5 mm ² (single-wire) 0.22.5 mm ² (finely stranded) 0.22.5 mm ² (with wire end ferrule)		
Stripping length	10 mm		
Screwdriver	Slotted 0.6 x 3.5 mm		
Tightening torque	0.40.5 Nm		

Table 27: Power Supply Cable Plug Properties

Connection to the field zone				
Number of cable plugs	4 pieces, six poles, screw terminals			
	1 piece, eight poles, screw terminals			
Wire cross-section	0.21.5 mm ² (single-wire)			
	0.21.5 mm ² (finely stranded)			
	0.21.5 mm ² (with wire end ferrule)			
Stripping length	6 mm			
Screwdriver	Slotted 0.4 x 2.5 mm			
Tightening torque	0.20.25 Nm			

Table 28: Input and Output Cable Plug Properties

HI 800 161 E Rev. 2.00 Page 31 of 56

4 Start-up F3 AIO 8/4 01

4.1.4 Mounting the F3 AIO 8/4 01 in Zone 2

(EC Directive 94/9/EC, ATEX)

The remote I/O is suitable for mounting in zone 2. Refer to the corresponding declaration of conformity available on the HIMA website.

When mounting the device, observe the special conditions specified in the following section.

Specific Conditions X

1. Mount the remote I/O in an enclosure that meets the EN 60079-15 requirements and achieves a type of protection of at least IP54, in accordance with EN 60529. Provide the enclosure with the following label:

Work is only permitted in the de-energized state

Exception:

If a potentially explosive atmosphere has been precluded, work can also performed when the controller is under voltage.

- 2. The enclosure in use must be able to safely dissipate the generated heat. The power dissipation of the module F3 AIO 8/4 01 is 18 W at maximum.
- 3. Protect the HIMatrix F3 AIO 8/4 01 with a 10 A time-lag fuse.

 The 24 VDC power must come from a power supply unit with safe isolation. Use power supply units of type PELV or SELV only.
- 4. Applicable standards:

VDE 0170/0171 Part 16, DIN EN 60079-15: 2004-5 VDE 0165 Part 1, DIN EN 60079-14: 1998-08

Pay particular attention to the following sections:

DIN EN 60079-15:

Chapter 5 Design

Chapter 6 Terminals and cabling
Chapter 7 Air and creeping distances

Chapter 14 Connectors

DIN EN 60079-14:

Chapter 5.2.3 Equipment for use in zone 2
Chapter 9.3 Cabling for zones 1 and 2
Chapter 12.2 Equipment for zones 1 and 2

The remote I/O is additionally equipped with the label represented below:

HIMA

Paul Hildebrandt GmbH + Co KG

A.-Bassermann-Straße 28, D-68782 Brühl

HIMatrix

⟨Ex⟩ II 3 G Ex nA II T4 X

F3 AIO 8/4 01

0°C < Ta < 60°C

Specific conditions X must be regarded!

Figure 9: Label for Ex Conditions

Page 32 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 4 Start-up

4.2 Configuration

The remote I/O can be configured using a programming tool, SILworX or ELOP II Factory. Which programming tool should be used, depends on the revision status of the operating system (firmware):

- SILworX is required for CPU OS V7 and higher.
- ELOP II Factory is required for CPU OS up to V6.x.

How to switch between operating systems is described in Chapter *Loading Operating Systems* of the system manual for compact systems (HI 800 141 E).

Observe the following points when configuring the module:

- In SILworX, the *Transmitter Voltage*[01] system parameter must be assigned a global variable. This global variable is used to set the value for the transmitter supply, see Table 29.
- In ELOP II Factory, the Transmitter Voltage[01] [USINT] system signal must be assigned a signal. This signal is used to set the value for the transmitter supply, see Table 33.

The transmitter supply must be configured even if it is not used.

4.3 Configuration with SILworX

In the Hardware Editor, the remote I/Os are represented like a base plate equipped with the following modules:

- Processor module (CPU)
- Input module (Al 8)
- Output module (AO 4)

Double-click the module to open the Detail View with the corresponding tabs. The tabs are used to assign the global variables configured in the user program to the system variables of the corresponding module.

4.3.1 Parameters and Error Codes for the Inputs and Outputs

The following tables specify the system parameters that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the variables assigned within the logic.

The error codes can also be displayed in SILworX.

4.3.2 Analog Inputs F3 AIO 8/4 01

The following tables present the statuses and parameters for the input module (AI 8) in the same order as given in the Hardware Editor.

HI 800 161 E Rev. 2.00 Page 33 of 56

4 Start-up F3 AIO 8/4 01

4.3.2.1 Tab **Module**

The **Module** tab contains the following system parameters:

System parameter	Data type	R/W	Description	
Al.Error Code	WORD	R	Error codes for	all analog inputs
			Coding	Description
			0x0001	Module fault
			0x0004	Time monitoring of conversion faulty
			0x0008	FTT test: Walking bit of data bus faulty
			0x0010	FTT test: Error while checking coefficients
			0x0020	FTT test: Operating voltages faulty
			0x0040	A/D conversion faulty (DRDY_LOW)
			0x0080	Cross links of MUX faulty
			0x0100	Walking bit of data bus faulty
			0x0200	Multiplexer addresses faulty
			0x0400	Faulty operating voltages
			0x0800	Measuring system (characteristic) faulty (unipolar)
			0x1000	Measuring system (final values, zero point) faulty (unipolar)
			0x8000	A/D conversion faulty (DRDY_HIGH)
Module Error Code	WORD	R	Module error c	ode
			Coding	Description
			0x0000	I/O processing, if required with errors, see other error codes
			0x0001	No I/O processing (CPU not in RUN)
			0x0002	No I/O processing during the booting test
			0x0004	Manufacturer interface operating
			0x0010	No I/O processing: invalid configuration
			0x0020	No I/O processing: fault rate exceeded
			0x0040/ 0x0080	No I/O processing: configured module not plugged in
Module SRS	UDINT	R	Slot number (S	system Rack Slot)
Module Type	UINT	R	`	e, target value: 0x001E [30 _{dez}]
Transmitter.Error Code	WORD	R		the transmitter unit
			Coding	Description
			0x0001	Fault in the transmitter supply
			0x0400	FTT test: 1st temperature threshold
				exceeded
			0x0800	FTT test: 2nd temperature threshold exceeded
Transmitter[01].Error Code	BYTE	R	Error codes for	each transmitter group
113.13.1.13.[01].2.10.0000	BITE	IX	Coding	Description Description
			0x01	Module fault of transmitter supply
			0x02	Overcurrent of transmitter supply
			0x04	Undervoltage of transmitter supply.
			0x08	Overvoltage of transmitter supply.
	1	l	1 1 2 2 2 2	

Page 34 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 4 Start-up

System parameter	Data type	R/W	Description
Transmitter Voltage[01]	USINT	W	Switching of the transmitter supply for each group: 1 = 8.2 V 2 = 26.0 V

Table 29: SILworX - System Parameters for Analog Inputs, **Module** Tab

4.3.2.2 Tab AI 8: Channels

The Al 8: Channels tab contains the following system variables.

System parameter	Data type	R/W	Description		
-> Error Code	BYTE	R	Error codes for the analog input channels		
[BYTE]			Coding	Description	
			0x01	Fault in the analog input module	
			0x02	Out of the defined limit values.	
			0x04	A/D converter faulty, measured values invalid	
			0x08	Measured value out of the safety-related accuracy	
			0x10	Measured value overflow	
			0x20	Channel not operating	
			0x40	Address error of both A/D converters	
-> Value [INT]	INT	R	Analog value for each channel [INT] from 0+2000 (0+10 V) The validity depends on <i>Al.Error Code</i>		
Channel Used [BOOL] ->	BOOL	W	Channel configuration: 1 = operating 0 = not operating		
Threshold LOW [INT] ->	INT	W	Voltage range upper limit for low level -> Underflow [BOOL]		
Limit Value HIGH [INT] ->	INT	W	Voltage range low limit for high level -> Overflow [BOOL]		
Transmitter Used [BOOL] ->	BOOL	W	Al channel used with transmitter supply: 1 = used 0 = not used		
-> Underflow [BOOL]	BOOL	R	Underflow -> Value [INT] in accordance with Limit Value LOW [INT] -> The validity depends on Al.Error Code		
-> Overflow [BOOL]	BOOL	R	Overflow -> Value [INT] in accordance with Limit Value HIGH [INT] -> The validity depends on Al.Error Code		

Table 30: SILworX - System Parameters for Analog Inputs, AI 8: Channels Tab

HI 800 161 E Rev. 2.00 Page 35 of 56

4 Start-up F3 AIO 8/4 01

4.3.3 Analog Outputs F3 AIO 8/4 01

The following tables present the statuses and parameters for the output module (AO 4) in the same order as given in the Hardware Editor.

4.3.3.1 Tab **Module**

The **Module** tab contains the following system parameters:

System parameter	Data type	R/W	Description	
AO.Error Code	WORD	R	Error codes for all analog outputs	
			Coding	Description
			0x0001	Module fault
			0x0002	Safety switch 1 faulty
			0x0004	Safety switch 2 faulty
			0x0008	FTT test of test pattern faulty
			0x0010	FTT test: Error while checking coefficients
			0x0400	FTT test: 1st temperature threshold exceeded
			0x0800	FTT test: 2nd temperature threshold exceeded
			0x2000	Status of safety switches
			0x4000	Active shutdown via watchdog faulty
Module Error Code	WORD	К	Module error code	
			Coding	Description
			0x0000	I/O processing, if required with errors, see other error codes
			0x0001	No I/O processing (CPU not in RUN)
			0x0002	No I/O processing during the booting test
			0x0004	Manufacturer interface operating
			0x0010	No I/O processing: invalid configuration
			0x0020	No I/O processing: fault rate exceeded
			0x0040/ 0x0080	No I/O processing: configured module not plugged in
Module SRS	UDINT	R	Slot number (System Rack Slot)	
Module Type	UINT	R	Type of module, target value: 0x0069 [105 _{dec}]	

Table 31: SILworX - System Parameters for Analog Outputs, **Module** Tab

Page 36 of 56 HI 800 161 E Rev. 2.00

4.3.3.2 Tab **AO 4: Channels**

The AO 4: Channels tab contains the following system parameters:

System parameter	Data type	R/W	Description		
-> Error Code	BYTE	R	Error codes for the analog output channels		
[BYTE]			Coding Description 0x01 Fault in the analog output unit		
			0x80	-> Value [INT] out of the specified range	
-> Value [INT]	INT	R	Output value of AO channels: Current characteristic curve: 0+2000 (0+20 mA) Current characteristic curve: -20000 (0 mA) Before being normalized, the values are checked for plausibility. Current characteristic curve: Values < 0: are normalized to 0 Values < intermediate data point LOW: Normalization with intermediate data point LOW Values > intermediate data point HIGH: Normalization with intermediate data point HIGH		
Channel Used [BOOL] ->	BOOL	W	Channel configuration: 1 = operating 0 = not operating		

Table 32: SILworX - System Parameters for Analog Outputs, AO 4: Channels Tab

4.4 Configuration with ELOP II Factory

4.4.1 Configuring the Inputs and Outputs

The signals previously defined in the Signal Editor (Hardware Management) are assigned to the individual channels (inputs and outputs) using ELOP II Factory. Refer to the system manual for compact systems or the online help for more details.

The following chapter describes the system signals used for assigning signals in the remote I/O.

4.4.2 Signals and Error Codes for the Inputs and Outputs

The following tables specify the system signals that can be read and set for the inputs and outputs, including the corresponding error codes.

In the user program, the error codes can be read using the signals assigned within the logic.

The error codes can also be displayed in ELOP II Factory.

HI 800 161 E Rev. 2.00 Page 37 of 56

4.4.3 Analog Inputs F3 AIO 8/4 01

System Signal	R/W	Description			
Mod.SRS [UDINT]	R	Slot number (System Rack Slot)			
Mod. Type [UINT]	R	Type of module, target value: 0x001E [30 _{dec}]			
Mod. Error Code	R	Module error code			
[WORD]		Coding	Description		
		0x0000	I/O processing, if required with errors		
			see other error codes		
		0x0001	No I/O processing (CPU not in RUN)		
		0x0002	No I/O processing during the booting test		
		0x0004	Manufacturer interface operating		
		0x0010	No I/O processing: invalid configuration		
		0x0020	No I/O processing: fault rate exceeded		
		0x0040/ 0x0080	No I/O processing: configured module not plugged in		
Al.Error Code	R	Error codes for	or all analog inputs		
[WORD]		Coding	Description		
		0x0001	Module fault		
		0x0004	Time monitoring of conversion faulty		
		0x0008	FTT test: Walking bit of data bus faulty		
		0x0010	FTT test: Error while checking coefficients		
		0x0020	FTT test: Operating voltages faulty		
		0x0040	A/D conversion faulty (DRDY_LOW)		
		0x0080	Cross links of MUX faulty		
		0x0100	Walking bit of data bus faulty		
		0x0200	Multiplexer addresses faulty		
		0x0400	Faulty operating voltages		
		0x0800	Measuring system (characteristic) faulty (unipolar)		
		0x1000	Measuring system (final values, zero point) faulty (unipolar)		
		0x8000	A/D conversion faulty (DRDY_HIGH)		
Al[xx].Error Code	R	Error codes for	or the analog input channels		
[BYTE]		Coding	Description		
		0x01	Fault in the analog input module		
		0x02	Out of the defined limit values.		
		0x04	A/D converter faulty, measured values invalid		
		0x08	Measured value out of the safety-related accuracy		
		0x10	Measured value overflow		
		0x20	Channel not operating		
		0x40	Address error of both A/D converters		
Al[xx].Value [INT]	R	Analog value for each channel [INT] from 0+2000 (0+10 V) The validity depends on Al[xx].Error Code			
Al[xx].Used [BOOL]	W	Channel confi	• • •		
• • •		1 = operating			
		0 = not operating			
Al[xx].Transmitter	W	Al channel used with transmitter supply:			
Used [BOOL]		1 = used 0 = not used			
[DOOL]		o – not used			

Page 38 of 56 HI 800 161 E Rev. 2.00

System signal	R/W	Description			
Transmitter Voltage[01] [USINT]	W	Switching of the transmitter supply for each group: 1 = 8.2 V 2 = 26.0 V			
Transmitter.	R	Error codes for the transmitter unit			
Error Code [WORD]		Coding	Description		
		0x0001	Fault in the transmitter supply		
		0x0400	FTT test: 1st temperature threshold exceeded		
		0x0800	FTT test: 2nd temperature threshold exceeded		
Transmitter[01].	R	Error codes for	each transmitter group		
Error Code [BYTE]		Coding	Description		
		0x01	Module fault of transmitter supply		
		0x02	Overcurrent of transmitter supply		
		0x04	Undervoltage of transmitter supply.		
		0x08	Overvoltage of transmitter supply.		
Al[xx].Underflow [BOOL]	R	Underflow AI[INT]. Value in accordance with AI[xx]. Limit Value LOW The validity depends on AI[xx]. Error Code			
Al[xx].Overflow [BOOL]	R	Overflow AI[INT]. Value in accordance with AI[xx]. Limit Value HIGH The validity depends on AI[xx]. Error Code			
Al[xx].Threshold LOW [INT]	W	Voltage range upper limit for low level AI[xx]. Underflow			
Al[xx].Limit Value HIGH [INT]	W	Voltage range low limit for high level AI[xx]. Overflow			

Table 33: ELOP II Factory - System Signals for the Analog Inputs

HI 800 161 E Rev. 2.00 Page 39 of 56

4.4.4 Analog Outputs F3 AlO 8/4 01

System signal	R/W	Description				
Mod.SRS [UDINT]	R	Slot number (S	Slot number (System Rack Slot)			
Mod. Type [UINT]	R	Type of module, target value: 0x0069 [105 _{dec}]				
Mod. Error Code	R	Module error o	code			
[WORD]		Coding	Description			
		0x0000	I/O processing, if required with errors, see other error codes			
		0x0001	No I/O processing (CPU not in RUN)			
		0x0002	No I/O processing during the booting test			
		0x0004	Manufacturer interface operating			
		0x0010	No I/O processing: invalid configuration			
		0x0020	No I/O processing: fault rate exceeded			
		0x0040/ 0x0080	No I/O processing: configured module not plugged in			
AO.Error Code	R	Error codes for	r the analog output channels			
[WORD]		Coding	Description			
		0x0001	Module fault			
		0x0002	Safety switch 1 faulty			
		0x0004	Safety switch 2 faulty			
		0x0008	FTT test of test pattern faulty			
		0x0010	FTT test: Error while checking coefficients			
		0x0400	FTT test: 1st temperature threshold exceeded			
		0x0800	FTT test: 2nd temperature threshold exceeded			
		0x2000	Status of safety switches			
		0x4000	Active shutdown via watchdog faulty			
AO[xx].Error Code	R	Error codes for	r the analog output channels			
[BYTE]		Coding	Description			
		0x01	Fault in the analog output unit			
		0x80	AO [xx]. Value out of specified range			
AO[xx].Value [INT]	W	Output value o	of AO channels:			
			cteristic curve: 0+2000 (0+20 mA)			
		Current charac	cteristic curve: -20000 (0 mA)			
		Refere being	normalized, the values are checked for plausibility.			
		Current charac	•			
		■ Values < 0:				
			rmalized to 0			
		■ Values < intermediate data point LOW:				
			alization with intermediate data point LOW			
		 Values > intermediate data point HIGH: Normalization with intermediate data point HIGH 				
		_	t <u>not</u> be used as safety-related outputs!			
AO[x].Used [BOOL]	W	Channel configuration				
		1 = Channel or				
		0 = Channel no	ot operating			

Table 34: ELOP II Factory - System Signals for the Analog Outputs

Page 40 of 56 HI 800 161 E Rev. 2.00

4.5 Connection Variants

This chapter describes the permissible wiring of the remote I/O in safety-related applications.

Only the connection variants specified here are permitted for SIL 3 applications.

4.5.1 Connecting Proximity Switches

Proximity switches are connected to the analog inputs using the Z 7309 shunt adapter, see Figure 10.

The proximity switch is connected to its supply via the line resistor RL. Afterwards, it is connected in series to the R1 resistor.

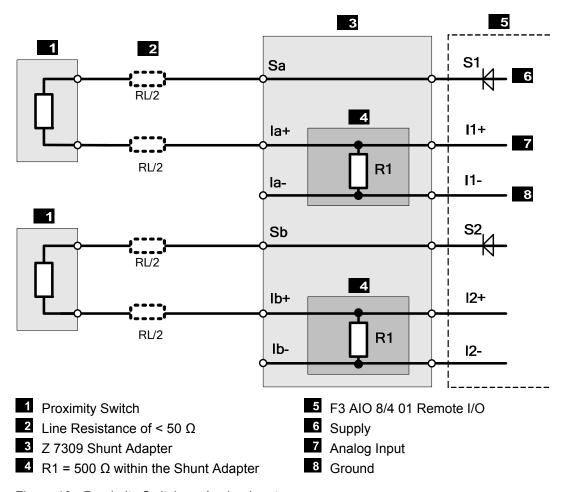


Figure 10: Proximity Switch on Analog Inputs

1

Unshielded cables may be used (zone A, in accordance with EN 61131 – 2: 2007). Shielded cables must be used if the system is located in a hostile EMC environment (zone B or C). The shielding must be earthed by attaching it to the shroud.

HI 800 161 E Rev. 2.00 Page 41 of 56

NOTE

Overload, failure due to improperly set voltage (8.2 V / 26 V)!

Failure to comply with these instructions can damage the electronic components. Prior to start-up, set the *Transmitter Supply[01]* system parameter to 1 (8.2 V). If the shunt adapter has been overloaded, it must be replaced.

Switching Thresholds of the Analog Inputs

With the shunt adapter Z 7309, the current measurement of 0/4...20 mA is set at a resolution of 2000 digits.

The switch-on and switch-off thresholds, the open-circuit (OC) and short-circuit (SC) thresholds and the corresponding fault reaction must be configured in the user program. The line resistance has already been taken into account with the limits.

Switching thresholds	Range of 2000 digits 1)	Description		
NAMUR proximity sw	itches in accordance with El	N 60947-5-6		
Switch-on threshold 1.75 mA [175 digits] Transition from Low to High L → H				
Switch-off threshold H → L	1.55 mA [155 digits]	Transition from High to Low		
OC Limit	≤ 0.20 mA [20 digits]	Fault reaction to be configured: Set the input value to faulty.		
SC Limit	≥ 10.86 mA [1086 digits]	Fault reaction to be configured: Set the input value to faulty.		
SN / S1N proximity sv	vitches from Pepperl+Fuchs			
Switch-on threshold L → H	2.45 mA [245 digits]	Transition from Low to High		
Switch-off threshold H → L	2.25 mA [225 digits]	Transition from High to Low		
OC Limit	≤ 0.20 mA [20 digits]	Fault reaction to be configured: Set the input value to faulty.		
SC Limit	≥ 5.63 mA [563 digits]	Fault reaction to be configured: Set the input value to faulty.		
1) Verify the values of the proximity switches actually in use.				

Table 35: Thresholds for the Inputs with Proximity Switches

Page 42 of 56 HI 800 161 E Rev. 2.00

4.5.2 Connecting Wired Mechanical Contacts

Wired mechanical contacts are connected as described in Figure 11 and Figure 12. Wired mechanical contacts are connected to the analog inputs using the Z 7308 shunt adapter. The shunt adapter protects the analog inputs against overvoltage and short-circuits from the field zone.

The supply voltage must be set to 26 V.

4.5.2.1 Wired Mechanical Contacts with Resistance Values of 2 k Ω and 22 k Ω

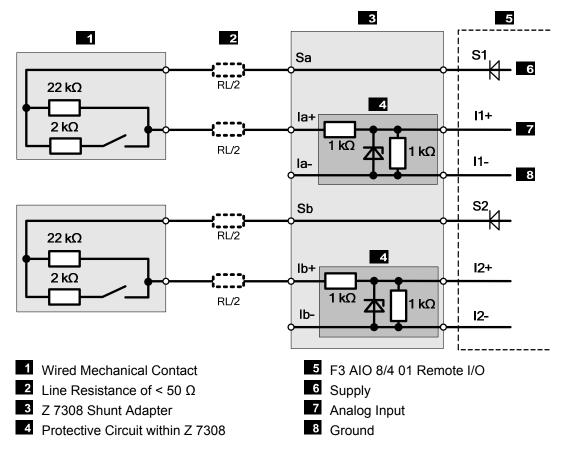


Figure 11: Wired Mechanical Contact

Switching Thresholds of the Analog Inputs

The switch-on and switch-off thresholds, the open-circuit (OC) and short-circuit (SC) thresholds and the corresponding fault reaction must be configured in the user program. The line resistance has already been taken into account with the limits.

Switching threshold	Value	Description
Switch-on threshold L → H	> 5 V [1000 digits]	Transition from Low to High
Switch-off threshold H → L	< 4 V [800 digits]	Transition from High to Low
OC Limit	< 0.4 V [80 digits]	Fault reaction to be configured: Set the input value to zero.
SC Limit	> 11 V [2200 digits]	Fault reaction to be configured: Set the input value to zero.

Table 36: Thresholds for the Inputs with Wired Mechanical Contacts

HI 800 161 E Rev. 2.00 Page 43 of 56

4.5.2.2 Wired Mechanical Contacts with Resistance Values of 2.1 kΩ and 22 kΩ A BARTEC resistive coupling element ($\boxed{2}$, HIMA part no. 88 0007829) is connected upstream to the mechanical contact and connected to the analog inputs using the Z 7308 shunt adapter, see Figure 12.

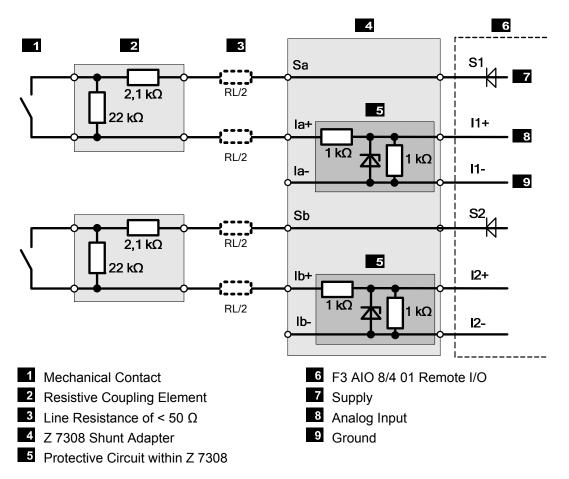


Figure 12: Mechanical Contact with Resistive Coupling Element

Switching Thresholds of the Analog Inputs

The switch-on and switch-off thresholds, the open-circuit (OC) and short-circuit (SC) thresholds and the corresponding fault reaction must be configured in the user program. The line resistance has already been taken into account with the limits.

Switching threshold	Value	Description
Switch-on threshold L → H	> 5 V [1000 digits]	Transition from Low to High
Switch-off threshold H → L	< 4 V [800 digits]	Transition from High to Low
OC Limit	< 0.4 V [80 digits]	Fault reaction to be configured: Set the input value to zero.
SC Limit	> 9 V [1800 digits]	Fault reaction to be configured: Set the input value to zero.

Table 37: Switching Thresholds for the Inputs for Mechanical Contacts with Resistive Coupling Element

Page 44 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 5 Operation

5 Operation

The remote I/O can only operated together with a controller. No specific monitoring is required for remote I/Os.

5.1 Handling

Handling of the remote I/O during operation is not required.

5.2 Diagnosis

A first diagnosis results from evaluating the LEDs, see Chapter 3.5.1.

The device diagnostic history can also be read using the programming tool.

HI 800 161 E Rev. 2.00 Page 45 of 56

6 Maintenance F3 AIO 8/4 01

6 Maintenance

No maintenance measures are required during normal operation.

If a failure occurs, the defective module or device must be replaced with a module or device of the same type or with a replacement model approved by HIMA.

Only the manufacturer is authorized to repair the device/module.

6.1 Faults

Refer to Chapter 3.1.1.1, for more information on the fault reaction of inputs.

Refer to Chapter 3.2, for more information on the fault reaction of the outputs.

If the test harnesses detect safety-critical faults, the module enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the de-energized, safe state. The evaluation of diagnostics provides information on the fault cause.

6.2 Maintenance Measures

The following measures are required for the device:

- Loading the operating system, if a new version is required
- Executing the proof test

6.2.1 Loading the Operating System

HIMA is continuously improving the operating system of the devices. HIMA recommends to use system downtimes to load a current version of the operating system into the devices.

Refer to the release list to check the consequences of the new operation system version on the system!

The operating system is loaded using the programming tool.

Prior to loading the operating system, the device must be in STOP (displayed in the programming tool). Otherwise, stop the device.

For more information, refer to the programming tool documentation.

6.2.2 Proof Test

HIMatrix devices and modules must be subjected to a proof test in intervals of 10 years. For more information, refer to the safety manual (HI 800 023 E).

Page 46 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 7 Decommissioning

7 Decommissioning

Remove the supply voltage to decommission the device. Afterwards pull out the pluggable screw terminal connector blocks for inputs and outputs and the Ethernet cables.

HI 800 161 E Rev. 2.00 Page 47 of 56

8 Transport F3 AIO 8/4 01

8 Transport

To avoid mechanical damage, HIMatrix components must be transported in packaging.

Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transport.

Page 48 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 9 Disposal

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

HI 800 161 E Rev. 2.00 Page 49 of 56

9 Disposal F3 AIO 8/4 01

Page 50 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 Appendix

Appendix

Glossary

Term	Description
ARP	Address resolution protocol: Network protocol for assigning the network addresses to hardware addresses
Al	Analog input
AO	Analog output
COM	Communication module
CRC	Cyclic redundancy check
DI	Digital input
DO	Digital output
ELOP II Factory	Programming tool for HIMatrix systems
EMC	Electromagnetic compatibility
EN	European norm
ESD	Electrostatic discharge
FB	Fieldbus
FBD	Function block diagrams
FTT	Fault tolerance time
ICMP	Internet control message protocol: Network protocol for status or error messages
IEC	International electrotechnical commission
MAC address	Media access control address: Hardware address of one network connection
PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory
PE	Protective earth
PELV	Protective extra low voltage
PES	Programmable electronic system
R	Read: The system variable or signal provides value, e.g., to the user program
Rack ID	Base plate identification (number)
Interference-free	Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed <i>interference-free</i> if it does not distort the signals of the other input circuit.
R/W	Read/Write (column title for system variable/signal type)
SELV	Safety extra low voltage
SFF	Safe failure fraction, portion of faults that can be safely controlled
SIL	Safety integrity level (in accordance with IEC 61508)
SILworX	Programming tool for HIMatrix systems
SNTP	Simple network time protocol (RFC 1769)
SRS	System.rack.slot addressing of a module
SW	Software
TMO	Timeout
W	Write: System variable/signal is provided with value, e.g., from the user program
r _{PP}	Peak-to-peak value of a total AC component
Watchdog (WD)	Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the ERROR STOP state.
WDT	Watchdog time

HI 800 161 E Rev. 2.00 Page 51 of 56

Appendix F3 AIO 8/4 01

Index of I	Figures	
Figure 1:	Circuitry for Line Monitoring	13
Figure 2:	Application Example for Safety-Related Analog Outputs	17
Figure 3:	Sample Type Label	19
Figure 4:	Front View	20
Figure 5:	Block Diagram	20
Figure 6:	Sample MAC Address Label	22
Figure 7:	HIMatrix F3 AlO 8/4 012 with Aluminum Plate	26
Figure 8:	Aluminum Plate with Dimensions	27
Figure 9:	Label for Ex Conditions	32
Figure 10:	Proximity Switch on Analog Inputs	41
Figure 11:	Wired Mechanical Contact	43
Figure 12:	Mechanical Contact with Resistive Coupling Element	44

Page 52 of 56 HI 800 161 E Rev. 2.00

F3 AIO 8/4 01 Appendix

Index of	Tables	
Table 1:	Programming Tools for HIMatrix Remote I/Os	5
Table 2:	Additional Relevant Documents	6
Table 3:	Environmental Requirements	9
Table 4:	Input Values for the Analog Inputs	11
Table 5:	Examples of Line Monitoring - Resistance Values	13
Table 6:	Examples of Line Monitoring - Voltage Values	13
Table 7:	Voltage Values with Line Monitoring of DO	14
Table 8:	Example of Short-Circuit	15
Table 9:	Output Values of the Analog Outputs	17
Table 10:	Available Variants	18
Table 11:	Operating Voltage LED	21
Table 12:	System LEDs	21
Table 13:	Ethernet Indicators	22
Table 14:	Ethernet Interfaces Properties	22
Table 15:	Network Ports in Use	23
Table 16:	Product Data	24
Table 17:	Specifications for the Analog Inputs	24
Table 18:	Specifications for the Transmitter Supply	25
Table 19:	Specifications for the Analog Outputs	25
Table 20:	Product Data of F3 AIO 8/4 011 (-20 °C)	25
Table 21:	Product Data F3 AIO 8/4 012 (subsea / -20 °C)	26
Table 22:	Product Data of F3 AIO 8/4 014	27
Table 23:	Certified HIMatrix F3 AIO 8/4 01	28
Table 24:	Terminal Assignment for the Analog Inputs	29
Table 25:	Shunt Adapter	30
Table 26:	Terminal Assignment for the Analog Outputs	30
Table 27:	Power Supply Cable Plug Properties	31
Table 28:	Input and Output Cable Plug Properties	31
Table 29:	SILworX - System Parameters for Analog Inputs, Module Tab	35
Table 30:	SILworX - System Parameters for Analog Inputs, Al 8: Channels Tab	35
Table 31:	SILworX - System Parameters for Analog Outputs, Module Tab	36
Table 32:	SILworX - System Parameters for Analog Outputs, AO 4: Channels Tab	37
Table 33:	ELOP II Factory - System Signals for the Analog Inputs	39
Table 34:	ELOP II Factory - System Signals for the Analog Outputs	40
Table 35:	Thresholds for the Inputs with Proximity Switches	42
Table 36:	Thresholds for the Inputs with Wired Mechanical Contacts	43
Table 37:	Switching Thresholds for the Inputs for Mechanical Contacts with Resistive Coupling Element	44

HI 800 161 E Rev. 2.00 Page 53 of 56

Appendix F3 AIO 8/4 01

Index

block diagram	20	reset key	23
•		safe ethernet	
fault reaction		safety function	
analog Inputs	12	specifications	24
front view	20	SRS	19

Page 54 of 56 HI 800 161 E Rev. 2.00

SAFETY NONSTOP

HIMA Paul Hildebrandt GmbH + Co KG
P.O. Box 1261
68777 Brühl, Germany
Phone: +49 6202 709-0

Fax: +49 6202 709-107