GE Grid Solutions

Multilin 469

Complete integrated protection and management of medium and large motors

The Multilin™ 469 Motor Protection System, a member of the SR family of relays, provides protection, control, simplified configuration and advanced communications in a cost effective industry leading draw-out construction. Designed for medium voltage motors, the 469 delivers advanced protection with customizable overload curves and single CT differential protection for added flexibility. The 469 also provides simplified configuration using the Motor Settings Auto-Configurator, providing a quick and easy set-up of motor parameters. Coupled with advanced protection and diagnostics, the 469 provides users the flexibility of multiple communication protocols allowing integration into new and existing control networks.

Key Benefits

- Comprehensive motor protection plus voltage dependant overload curves, torque metering and protection, broken rotor bar protection
- Most advanced thermal model Including multiple RTD inputs for stator thermal protection
- Minimize replacement time Draw-out construction
- Complete asset monitoring Temperature, Analog I/O, full metering including demand & energy
- Improve uptime of auxiliary equipment Through I/O monitoring
- Reduce troubleshooting time and maintenance costs Event reports, waveform capture, data logger
- Built in simulation functions simplify testing and commissioning
- Cost Effective Access to information Through standard RS232 & RS485 serial ports, and optional Ethernet and DeviceNet Ports
- Field upgradable firmware and settings
- Optional Conformal coating for exposure to chemically corrosive or humid environments

Applications

• Protection and Management of three phase medium and large horsepower motors and driven equipment, including high inertia, two speed and reduced-voltage start motors

Protection and Control

- Thermal model biased with RTD and negative sequence current feedback
- Start supervision and inhibit
- Mechanical jam
- Voltage compensated acceleration
- Undervoltage, overvoltage
- Underfrequency
- Stator differential protection
- Thermal overload
- Overtemperature protection
- Phase and ground overcurrent
- Current unbalance
- Power elements
- Torque protection
- Dual overload curves for 2 speed motors
- Reduced voltage starting control

Communications

- Multiple Ports 10baseT Ethernet, RS485, RS232, RS422, DeviceNet
- Multiple Protocols Modbus RTU, Modbus TCP/ IP, DeviceNet

Monitoring & Metering

- A, V, W, var, VA, PF, Hz, Wh, varh, demand
- Torque, temperature (12 RTDs)
- Event recorder
- Oscillography & Data Logger (trending)
- Statistical information & learned motor data

EnerVista Software

- State of the art software for configuration and commissioning Multilin products
- Document and software archiving toolset to ensure reterence material and device utilities are up-to-date
- EnerVista[™] Integrator providing easy integration of data in the 469 into new or existing monitoring and control systems

Protection and Control

The 469 is a digital motor protection system designed to protect and manage medium and large motors and driven equipment. It contains a full range of selectively enabled, self contained protection and control elements as detailed in the Functional Block Diagram and Features table.

Motor Thermal Model

The primary protective function of the 469 is the thermal model with six key elements:

- Overload Curves
- Unbalance Biasing
- Hot/Cold Safe Stall Ratio
- Motor Cooling Time Constants
- Start Inhibit and Emergency Restart
- RTD Biasing

Overload Curves

The curves can take one of three formats: standard, custom, or voltage dependent. For all curve styles, the 469 retains thermal memory in a thermal capacity used register which is updated every 0.1 second. The overload pickup determines where the running overload curve begins.

The 469 standard overload curves are of standard shape with a multiplier value of 1 to 15.

The voltage dependent overload curves are used in high inertia load applications, where motor acceleration time can actually exceed the safe stall time and motor thermal limits. During motor acceleration, the programmed thermal overload curve is dynamically adjusted with reference to the system voltage level. The selection of the overload curve type and the shape is based on motor thermal limit curves provided by motor vendor.

Fifteen standard overload curves.

Typical custom overload curve.

Device Number	Function		
14	Speed switch		
19/48	Reduced voltage start and incomplete sequence		
27/59	Undervoltage/Overvoltage		
	Reverse power		
70	Mechanical Jam		
32	Acceleration time		
	Over Torque		
37	Undercurrent/Underpower		
38	Bearing RTD		
46	Current Unbalance		
47	Phase Reversal		
49	Stator RTD		
50	Short circuit backup		
50G/51G	Ground overcurrent backup		
51	Overload		
55	Power factor		
66	Starts/hour and time between starts		
81	Frequency		
86	Overload lockout		
87	Differential		

Unbalance (Negative Sequence Current) Biasing

Negative sequence current, which causes rotor heating, is not accounted for in the thermal limit curves supplied by the motor manufacturer. The 469 measures unbalance as the ratio of negative to positive sequence current. The thermal model is biased to reflect the additional heating. Motor derating due to current unbalance can be selected via the setpoint unbalance bias k factor. Unbalance voltage causes approximately 6 times higher level of current unbalance (1% of voltage unbalance equal to 6% of current unbalance). Note that the k=8 curve is almost identical to the NEMA derating curve.

Hot/Cold Safe Stall Ratio

The Hot/Cold Safe Stall time ratio defines the steady state level of thermal capacity used (TCU) by the motor. This level corresponds to normal operatingtemperature of the fully loaded motor and will be adjusted proportionally if motor load is lower then rated.

The Hot/Cold Safe Stall ratio is used by the relay to determine the lower limit of the running cool down curve, and also defines the thermal capacity level of the central point in RTD Biasing curve.

Motor Cooling Time Constants

When the 469 detects that the motor is running at a load lower then overload pickup setpoint, or the motor is stopped, it will start reducing the stored TCU value, simulating actual motor cool down process. TCU decays exponentially at a rate dictated by Cooling Time Constants setpoints. Normally the cooling down process of the stopped motor is much slower than that of a running motor, thus running and stopped cooling time constants setpoints are provided in the relay to reflect the difference. The TCU lower limit of the running cool down curve is defined by Hot/Cold Safe Stall Ratio and level of the motor load. The TCU lower limit of the stopped cool down curve is 0% and corresponds to motor at ambient temperature.

Start Inhibit and Emergency Restart

The Start Inhibit function prevents starting of

Exponential cooldown (hot/cold curve ratio 60%

a motor when insufficient thermal capacity is available or motor start supervision function dictate the start inhibit. In case of emergency the thermal capacity used and motor start supervision timers can be reset to allow the hot motor starting.

RTD Biasing

The 469 thermal overload curves are based solely on measured current, assuming a normal 40°C ambient and normal motor cooling. The actual motor temperature will increase due to unusually high ambient temperature, or motor cooling blockage. Use the RTD bias feature to augment the thermal model calculation of Thermal Capacity Used, if the motor stator has embedded RTDs.

The RTD bias feature is feedback of measured stator temperature. This feedback acts to correct the assumed thermal model. Since RTDs have a relatively slow response, RTD biasing is useful for slow motor heating. Other portions of the thermal model are required during starting and heavy overload conditions when motor heating is relatively fast.

For RTD temperatures below the RTD BIAS MINIMUM setting, no biasing occurs. For maximum stator RTD temperatures above the RTD BIAS MAXIMUM setting, the thermal memory is fully biased and forced to 100%. At values in between, if the RTD bias thermal capacity used is higher compared to the thermal capacity used created by other features of the thermal model, then this value is used from that point onward.

Motor Start Supervision

Motor Start Supervision consists of the following features: Time-Between-Starts, Start-per-Hour, Restart Time.

These elements are intended to guard the motor against excessive starting duty, which is normally defined by the motor manufacturer in addition to the thermal damage curves.

Mechanical Jam and Acceleration Time

These two elements are used to prevent motor damage during abnormal operational conditions such as excessively long acceleration times or stalled rotor.

Phase Differential Protection

This function is intended to protect the stator windings and supply power cables of large motors. Two types of current transformers connections are supported:

- 6 CT's externally connected in the summing configuration.
- 3 Flux Balancing CT's.

Separate trip pickup levels and time delays are provided for motor starting and running conditions.

Short Circuit Trip

This function is intended to protect the stator windings of the motors against phase-to-phase faults.

RTD Bias curve.

Equipped with an overreach filter, the 469 removes the DC component from the asymmetrical current present at the moment a fault occurs or motor starts.

A trip backup feature is also available as part of this function, used to issue a second trip if the fault is not cleared within a given time delay. The backup feature can also be assigned to an auxiliary contact for annunciation or remote tripping of upstream protection devices

Ground Fault

This function is designed to protect motors against phase to ground faults.

There are two dedicated ground current inputs in the relay, which support the following types of ground current detection.

- Core balance (Zero sequence) current transformer.
- Core balance (Zero sequence) 50:0.025 A (sensitive) current transformer.
- Residual connection of phase current transformers.

The function is equipped with an overreach filter, which removes the DC component from the asymmetrical current present at the moment a fault occurs, or a motor starts. Two pickup levels (trip and alarm) with individual time delays are available for ground fault detection.

A trip Backup feature is also available as part of this function. The operational principal of Ground Fault Trip Backup is the same as of Short Circuit Trip Backup.

Voltage and Frequency Protection

Use the voltage and frequency protection functions to detect abnormal system voltage and frequency conditions, potentially hazardous to the motor.

The following voltage elements are available:

- Over and Undervoltage
- Over and Underfrequency
- Phase Reversal

To avoid nuisance trips, the 469 can be set to block the undervoltage element when the bus that supplies power to the motor is de-energized, or under VT fuse failure conditions.

Power Elements

The following power elements are available in 469 relay. The first four elements have blocking provision during motor starting.

Power Factor

This element is used in synchronous motors applications to detect out-of-synchronism conditions.

Reactive Power

This element is used in applications where the reactive power limit is specified.

Underpower

Used to detect loss of load.

Reverse Active Power

Useful to detect conditions where the motor can become a generator.

Overtorque

This element is used to protect the driven load from mechanical breakage.

Current Unbalance

In addition to thermal model biasing current unbalance is available in the 469 relay as an independent element with 2 pickup levels and a built-in single phasing detection algorithm.

RTD Protection

The 469 has 12 programmable RTD inputs supporting 4 different types of RTD sensors. RTD inputs are normally used for monitoring stator, bearings, ambient temperature as well as other parts of the motor assembly that can be exposed to overheating. Each RTD input has 3 operational levels: alarm, high alarm and trip. The 469 also supports RTD trip voting and provides open/short RTD failure alarms.

Additional and Special Features

- Two speed motor protection.
- Load averaging filter for cyclic load applications
- Reduced voltage starting supervision.
 Variable frequency filter allowing accurate sensing and calculation of the analog values in VFD applications.
- Analog input differential calculation for dual drives applications.
- Speed counter trip and alarm.
- Universal digital counter trip and alarm.
- Pulsing KWh and Kvarh output.
- Trip coil supervision.
- Drawout indicator, Setpoints Access and Test permit inputs.
- Undervoltage Autorestart (Optional)
- Broken rotor bar detection system (Optional)
- VT Fuse Failure

Inputs and Outputs

Current and Voltage Inputs

The 469 has two sets of three phase CT inputs, one for phase current, and one dedicated for differential protection.

The ratings of the phase current inputs (1A and 5A) must be specified when ordering the relay, while the ratings for differential inputs are field programmable, supporting both 1A and 5A secondary currents.

There are also 2 single-phase ground CT inputs: A standard input with settable secondary rating; 5A or 1A, and a high sensitivity ground current detection input for high resistance grounded systems.

Three phase VT inputs support delta and wye configuration and provide voltage signals for all voltage, frequency and power based protection elements and metering.

Digital Inputs

The 469 has 5 predefined inputs:

- Starter Status
- Emergency Restart
- Remote Reset
- Setpoint Access
- Test Switch

The 469 also has four assignable digital inputs, which can be configured as the following functions:

- Remote Trip and Alarm
- Speed Switch Trip and Tachometer
- Vibration Switch Trip and Alarm
- Pressure Switch Trip and Alarm
- Load Shed Trip
- Universal Digital Counter
- External oscillography trigger and External Relay Fault Simulation initiation
- General Switch with programmable functions and outputs

Analog Inputs and Outputs

Use the four configurable analog inputs available in the 469 to measure motor operation related quantities fed to the relay from standard transducers. Each input can be individually set to measure 4-20 mA, 0-20 mA or 0-1 mA transducer signals. The 469 can also be set to issue trip or alarm commands based on signal thresholds.

Use the four configurable analog outputs available in the 469 to provide standard transducer signals to local monitoring equipment. The desired output signal must be specified when the relay is ordered, either 4-20 mA, or 0-1 mA. The analog outputs can be configured to provide outputs based on any measured analog value, or any calculated quantity.

Output Relays

There are six Form-C output relays available in the 469. Four relays are always non-failsafe and can be selectively assigned to perform trip, or alarm functions. A non-failsafe block start relay is also provided, controlled by protection functions requiring blocking functionality. Loss of control power or 469 internal failures are indicated via the failsafe service relay. The trip and alarm relays can also be configured with latching functionality.

Monitoring and Metering

The 469 includes high accuracy metering and recording for all AC signals. Voltage, current, RTD and power metering are built into the relay as a standard feature.

Metering

The following system values are accurately metered and displayed:

- Phase, differential and ground currents, average current, motor load, current unbalance.
- Phase-to-ground and Phase-to-phase voltages, average phase voltage, system frequency.
- Real, reactive, apparent power, power factor, watthours, varhours, torque
- Current and power demand.
- Analog inputs and RTD temperatures.
- Thermal capacity used, lockout times, motor speed

Monitoring

The 469 is equipped with monitoring tools to capture data. The following information is presented in a suitable format.

- Status of inputs, outputs and alarms
- Last trip data
- Motor learned parameters: last and maximum acceleration times, starting currents and starting TCU, average currents, RTD maximums, analog inputs maximums and minimums.
- Trip and general counters, motor running hours and start timers.
- Event recorder
- Oscillography

User Interface

Event Recorder

The event recorder stores motor and system information with a date and time stamp each time a system event occurs. Up to 256 events are recorded.

Oscillography

The 469 records up to 64 cycles with 12 samples per cycle of waveform data for 10 waveforms (Ia, Ib, Ic, Ig, Diffa, Diffb, Diffc, Va, Vb, Vc) each time a trip occurs. The record is date and time stamped.

Advanced Motor Diagnostics

The Multilin M60 provides advanced motor diagnostics including a broken rotor bar detection function. The broken rotor bar detection is a condition maintenance function that continuously monitors the motor's health while in operation. The advanced Motor Current Signature Analysis (MCSA) continuously analyzes the motor current signature and based on preset algorithms will determine when a broken rotor bar is present in the motor.

With fully programmable alarms, the broken rotor bar function will provide early detection of any rotor problems and advise maintenance personnel of the impending issue allowing for predictive maintenance of the motor and prevention of catastrophic motor failures.

By providing early indication of potential rotor problems, serious system issues such as: reduced starting torque, overloads, torque and speed oscillation and bearing wear can be avoided. With the advanced broken rotor bar detection system, advanced warning of impending problems reduces catastrophic failures, maximizing motor life and system uptime.

Simulation

The simulation feature tests the functionality and relay response to programmed conditions without the need for external inputs. When placed in simulation mode the 469 suspends reading of the actual inputs and substitutes them with the simulated values. Pre-trip and fault conditions can be simulated, with currents, voltages, system frequency, RTD temperatures, and analog inputs configured for each state.

User Interfaces

Keypad and Display

The 469 has a keypad and 40 character display for local monitoring and relay configuration without the need for a computer. Up to 20 user-selected default messages can be displayed when inactive. In the event of a trip, alarm, or start block, the display will automatically default to the pertinent message and the Message LED indicator will flash.

LED Indicators

The 469 has 22 LED indicators on the front panel. These give a quick indication of 469 status, motor status, and output relay status.

Communications

The 469 is equipped with three standard serial communications ports, one RS232 located in the front panel for easy troubleshooting and programming, and two RS485 in the rear of the relay. Optional 10BaseT Ethernet and DeviceNet ports are also available. The rear RS485 ports provide remote communications or connection to a DCS, SCADA, or PLC. The RS232 and RS485 ports support user programmable baud rates from 300 to 19,200 bps. The optional Ethernet port can be used to connect the 469 to 10 Mbps Ethernet networks. The three serial ports support ModBus® RTU protocol, while the Ethernet port supports ModBus® RTU via TCP/IP protocol. The communication system of the 469 is designed to allow simultaneous communication via all ports.

Using Ethernet as the physical media to integrate the 469 to Local or Wide Area Networks, replaces a multidrop-wired network (e.g., serial Modbus®), and eliminates expensive leased or dial-up connections, reducing monthly operating costs.

EnerVista Software

The EnerVista Suite is an industry leading set of software programs that will simplify every aspect of using the 469 relay. Tools to monitor the status of your motor, maintain your relay, and integrate information measured by the 469 into HMI or SCADA monitoring systems are available. Also provided are the utilities to analyze the cause of faults and system disturbances using the powerful Waveform and Sequence of Event viewers that come with the 469 Setup Software that is included with each relay.

Viewpoint Maintenance

Viewpoint Maintenance provides tools that will increase the security of your 469, create reports on the operating status of the relay, and simplify the steps to troubleshoot protected generators. Tools available in Viewpoint Maintenance include:

- Settings Audit Trail Report
- Device Health Report
- Comprehensive Fault Diagnostics

Viewpoint Monitoring

Viewpoint Monitoring is a powerful yet simpleto-use monitoring and data recording of small systems. Viewpoint Monitoring provides a complete HMI package with the following functionality:

- Plug-&-Play Device Monitoring
- Single-Line Monitoring & Control
- Annunciator Alarming
- Trending Reports
- Automatic Event Retrieval
- Automatic Waveform Retrieval

EnerVista Integrator

EnerVista Integrator is a toolkit that allows seamless integration of Multilin devices into new or existing automation systems. Included in EnerVista Integrator is:

- OPC/DDE Server
- Multilin Drivers
- Automatic Event Retrieval
- Automatic Waveform Retrieval

Create complete settings files for your 469 in 6 simple steps using the Motor Settings Auto-Configurator.

Retrofit Existing Multilin SR 469 Devices in Minutes

Traditionally, retrofitting or upgrading an existing relay has been a challenging and time consuming task often requiring re-engineering, panel modifications, and re-wiring. The Multilin 8 Series Retrofit Kit provides a quick, 3-step solution to upgrade previously installed Multilin SR 469 protection relays, reducing upgrade costs.

With the new 8 Series Retrofit Kit, users are able to install a new 869 Motor Protection System without modifying existing panel or switchgear cutouts, re-wiring, or need for drawing changes and re-engineering time and cost.

With this three-step process, operators are able to upgrade existing SR relays in as fast as 21 minutes, simplifying maintenance procedures and reducing system downtime.

EnerVista 8 Series Setup Software provides automated setting file conversion with graphical report to quickly and easily verify settings and identify any specific settings that may need attention.

Simply remove the upper, lower and low voltage terminal blocks and then remove the SR chassis from the panel. No need to disconnect any of the field wiring.

Insert the new 8 Series Retrofit chassis into the switchgear and simply plug-in the old terminal blocks - there is need to make any cut-out modifications or push and pull cables.

The 8 Series Retrofit Kit comes factory assembled and tested as a complete unit with the 8 Series protection device and includes replacement hardware (terminal blocks and screws) if the existing hardware is significantly aged or damaged.

Factory wired SR Terminal Block Frame to ensure mapping of SR terminal locations to the 8 Series terminal block

Existing SR Terminal Blocks easily plug-in

8 Series Protection Relay (matched to existing SR 469 device)

3" Depth Reduction Collar to ensure relay depth closely matches the previously installed SR device, eliminating the need to push or pull cables

Explore in Detail

Visit us online to explore the SR to 8 Series retrofit kit in detail using our interactive app. www.GEGridSolutions.com/8SeriesRetrofitKit

Multilin 8 Series Retrofit: Solutions Explorer Application

Technical Specifications

PHASE SHORT CIRCI	1177
Pickup Level:	2.0 to 20.0 x CT primary in steps of
	0.1 of any one phase
Time Delay:	0 to 1000 ms in steps of 10
Pickup Accuracy:	as per Phase Current Inputs
Elements:	Trip
REDUCED VOLTAGE	START
Transition Level:	25 to 300% FLA in steps of 1
Transition Lime:	1 to 250 s in steps of 1 Current Timer Current and Timer
OVERLOAD/STALL P	ROTECTION/THERMAL MODEL
Overload Curves:	15 Standard Overload Curves,
Curve Biasing	Custom Curve, Voltage Dependent Custom Curve for high inertia starting (all curves time out against average phase current) Phase Unbalance Hot/Cold Curve Ratio
	Stator RTD Running Cool Rate Stopped Cool Rate Line Voltage
Overload Pickup:	1.01 to 1.25 (for service factor)
Timing Accuracy:	+100 ms or +2% of total time
Elements:	Trip and Alarm
MECHANICAL JAM	
Pickup Level:	1.01 to 3.00 x FLA in steps of 0.01
Time Delay	1 to 30 s in steps of 1
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	± 0.5 s or $\pm 0.5\%$ of total time
LIEMENTS:	ГГР
Pickup Level:	0.01 - 0.99 x CT Trip
	0.01 - 0.95 x CT Alarm in steps of 0.01
Lime Delay: Block From Starts	1 to 60 s in steps of 1
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	± 0.5 s or $\pm 0.5\%$ of total time
Elements:	Trip and Alarm
Unbalance:	12 / 11 if lova > ELA
onbulunce:	12 / 11 x lavg / FLA if lava < FLA
Range:	0 to 100% UB in steps of 1
Pickup Level:	4 to 40% UB in steps of 1
Pickup Accuracy:	1 IO OU S IN STEPS OF 1 +2%
Timing Accuracy:	± 0.5 s or $\pm 0.5\%$ of total time
Elements:	Trip and Alarm
PHASE DIFFERENTIA	
Pickup Level:	0.05 to 1.0 x CI primary in steps of 0.01 of any one phase
Pickup Accuracy:	as per Phase Differential
	Current Inputs
Timing Accuracy:	+50 ms
Flomonto	Trip
Elements:	Trip NEOUS
Elements: GROUND INSTANTAL Pickup Level:	Trip NEOUS 0.1 to 1.0 x CT primary in steps of 0.01
Elements: GROUND INSTANTAL Pickup Level: Time Delay:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10
Elements: GROUND INSTANTAL Pickup Level: Time Delay: Pickup Accuracy:	Trip VEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input
Elements: GROUND INSTANTAL Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alerm
Elements: GROUND INSTANTAL Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI	Trip VEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm ER
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Fransition of no phase current to > overload pickup
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 o to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm ER Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: DOGGING PLOCY	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current folls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 0 to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min.	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 o to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements:	Trip NEOUS 0.1 to 1.0 × CT primary in steps of 0.01 o to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or \pm 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or \pm 0.5% of total time Block
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: I to 500 min. Timing Accuracy: Elements: RESTART BLOCK	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 os per Ground Current Input +50 ms Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts/Hour: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 o to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RETD	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current folls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current folls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RTD Pickup: Pickup Hysteresis: Time Delay: Elements:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s Trip and Alarm
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: Time Delay: Elements: Time Delay: Time D	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 os per Ground Current Input +50 ms Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s Trip and Alarm
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts/Hour: Time between Starts/Hour: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RTD Pickup Hysteresis: Time Delay: Time D	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 o to 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s Trip and Alarm 0.60 to 0.99 x Rated in
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RTD Pickup Hysteresis: Time Delay: Elements: UNDERVOLTAGE Pickup Level: Motor Starting:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Transition of no phase current to > overload pickup When current folls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s Trip and Alarm 0.60 to 0.99 x Rated in steps of 0.01
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Timeng Accuracy: Elements: JOGGING BLOCK Starts/Hour: Timeng Accuracy: Elements: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Elements: RESTART BLOCK Time Delay: Elements: RED Pickup Hysteresis: Time Delay: Elements: UNDERVOLTAGE Pickup Level: Motor Starting:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s Trip and Alarm 0.60 to 0.99 × Rated in steps of 0.01 0.60 to 0.99 × Rated in chance the steps of 1 2°C 0 so 10 so 10 so 10 so 10 0 so 10 so 10 so 10 0 so 10 so 10 1 so 10 so 10 1 so 10 so 10 1 steps of 0.01 1 so 10 1 so
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RTD Pickup Hysteresis: Time Delay: Elements: Motor Starting: Motor Running: Time Delay:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 os per Ground Current Input +50 ms Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.60 to 0.99 x Rated in steps of 0.01 steps of 0.01 to 0 s in steps of 0.1 to 0 s in steps of 0.1
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min. Timing Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RTD Pickup Hysteresis: Time Delay: Time Delay: Elements: UNDERVOLTAGE Pickup Level: Motor Starting: Motor Running: Time Delay: Time Delay: Pickup Level: Motor Starting:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 os per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time between Starts: 1 to 500 min, Starts: 1 to 500 ming Accuracy: Elements: RESTART BLOCK Time Delay: Timing Accuracy: Elements: RESTART BLOCK Time Delay: Time Delay: Time Delay: Elements: RTD Pickup Hysteresis: Time Delay: Elements: UNDERVOLTAGE Pickup Level: Motor Starting: Motor Running: Time Delay: Pickup Accuracy: Pickup Accuracy: Timing Accuracy: Pickup Accuracy: Time Delay: Time Delay:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 os per Ground Current Input +50 ms Trip and Alarm Transition of no phase current to > overload pickup When current falls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 ±0.5 s or ± 0.5% of total time Block 0.60 to 0.99 × Rated in steps of 0.01 any one phase 0.1 to 60.0 s in steps of 0.1 as per Voltage Inputs <100 ms or ±0.5% of total time
Elements: GROUND INSTANTAI Pickup Level: Time Delay: Pickup Accuracy: Elements: ACCELERATION TIMI Pickup: Dropout: Time Delay: Timing Accuracy: Elements: JOGGING BLOCK Starts/Hour: Time belay: Time Delay: Time Delay: Timing Accuracy: Elements: RTD Pickup Hysteresis: Time Delay: Timing Accuracy: Elements: RTD Pickup Hysteresis: Time Delay: Pickup Level: Motor Starting: Motor Running: Time Delay: Pickup Accuracy: Elements: Motor Running: Time Delay: Pickup Accuracy: Elements: Motor Running: Time Delay: Pickup Accuracy: Elements: Motor Running: Time Delay: Pickup Accuracy: Elements:	Trip NEOUS 0.1 to $1.0 \times CT$ primary in steps of 0.01 oto 1000 ms in steps of 10 as per Ground Current Input +50 ms Transition of no phase current to > overload pickup When current folls below overload pickup 1.0 to 250.0 s in steps of 0.1 ±100 ms or ± 0.5% of total time Trip 1 to 5 in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 50000 s in steps of 1 ±0.5 s or ± 0.5% of total time Block 1 to 250°C in steps of 1 2°C 3 s Trip and Alarm 0.60 to 0.99 × Rated in steps of 0.01 0.60 to 0.99 x Rated in steps of 0.01 0.60 to 0.99 x Rated in steps of 0.01 0.60 to 0.99 x Rated in steps of 0.01 as per Voltage Inputs <100 ms or ±0.5% of total time Trip and Alarm

PROTECTION	
OVERVOLTAGE	
Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: Elements:	1.01 to 1.10 x rated in steps of 0.01 any one phase 0.1 to 60.0 s in steps of 0.1 as per Voltage Inputs ±100 ms or ±0.5% of total time Trin and Alarm
Elements:	
VOLTAGE PHASE REV	APC or ACP phase rotation
Timing Accuracy:	500 to 700 ms
Flements:	Trin
FREQUENCY	ΠP
Required Voltage:	> 30% of full scale in Phase A
Overfrequency Pkp:	25.01 to 70.00 in steps of 0.01
Underfrequency Pkp	20.00 to 60.00 in steps of 0.01
Accuracy:	±0.02 Hz
Time Delay:	<100 ms or +0.5% of total time
Flements:	Trip and Alarm
	The street restrict
DIGITAL INPUTS	
REMOTE SWITCH	
Configurable:	Assignable to Digital Inputs 1 to 4
Timing Accuracy:	100 ms max.
Elements:	Trip ana Alarm
Configurable:	Assignable to Digital Inputs 1 to /
Time Delay:	1.0 to 250.0 s in steps of 0.1
Timing Accuracy:	100 ms max.
Elements:	Trip
LOAD SHED	
Configurable:	Assignable to Digital Inputs 1 to 4
Flements:	Trin
PRESSURE SWITCH	inp.
Configurable:	Assignable to Digital Inputs 1 to 4
Time Delay:	0.1 to 100.0 s in steps of 0.1
Timing Accuracy:	$\pm 100 \text{ ms or } \pm 0.5\% \text{ of total time}$
Flements:	Trip and Alarm
VIBRATION SWITCH	inp and marin
Configurable:	Assignable to Digital Inputs 1 to 4
Time Delay:	0.1 to 100.0 s in steps of 0.1
Flomonts:	±100 IIIS OF ±0.5% OF total time
DIGITAL COUNTER	
Configurable:	Assignable to Digital Inputs 1 to 4
Count Frequency:	<50 times a second
Range:	0 to 1 000 000 000
TACHOMETER	Aldim
Configurable:	Assignable to Digital Inputs 1 to 4
RPM Range:	100 to 7200 RPM
Pulse Duty Cycle:	> 10%
Elements:	I rip and Alarm
Configurable	Assignable Digital Inputs 1 to 4
Time Delay:	0.1 to 5000.0 s in steps of 0.1
Block From Start:	0 to 5000 s in steps of 1
Timing Accuracy:	±100 ms or ±0.5% of total time
Elements:	Irip and Alarm

PHASE CURRENT INPL	ITS
CT Primary:	1 to 5000 A
CT Secondary:	1 A or 5 A (must be specified
	with order)
Burden:	Less than 0.2 VA at rated load
Conversion Range:	0.05 to 20 x CT
Nominal Frequency:	20 - 70 Hz
Frequency Range:	20 - 120 Hz
Accuracy:	at < 2 × CT: ± 0.5% of 2 × CT
	at > 2 × CT: ± 1% of 20 × CT
CT Withstand:	1 second at 80 x rated current
	2 seconds at 40 x rated current
	continuous at 3 x rated current
DIFFERENTIAL CURRE	NTINPUTS
CT Primary:	1 to 5000 A
CT Secondary:	I A OF 5 A (Set point)
Burden:	Less than 0.2 vA at rated load
Conversion Range:	
Frequency Range	20 - 120 Hz
	+ 0.5% of 1 x CT for 5 A
Accuracy.	+ 0.5% of 5 x CT for 1 A
CT Withstand:	1 second at 80 x rated current
	2 seconds at 40 x rated current
	continuous at 3 x rated current
	continuous at 3 x rated current
GROUND CURRENT IN	IPUTS
CT Primary:	1 to 5000 A
CT Secondary:	1 A or 5 A (Set point)
Burden:	< 0.2 VA at rated load for 1 A or
Conversion Deser	5 A < 0.25 VA for 50:025 at 25 A
Conversion Kange:	20 ZO LIZ
Nominal Frequency:	20 - 70 HZ
Accuracy Kunge:	20 - 120 HZ
Accuracy:	± 0.5% of 5 x CT for 1 A
	± 0.125 A for 50:0.025
CT Withstand	1 second at 80 x rated current
er minotana.	2 seconds at 40 x rated current
	continuous at 3 x rated current
VOLTAGE INPUTS	
VT Ratio:	1.00 to 150.00:1 in steps of 0.01
VT Secondary:	273 V AC (full scale)
Conversion Range:	0.05 to 1.00 x full scale
Nominal Frequency:	20 - 70 Hz
Frequency Range:	20 - 120 Hz
Accuracy:	±0.5% of full scale
Max. Continuous:	280 V AC
Burden:	> 500 K 0
DIGITAL INPUTS	0 opto icolatod ipputo
External Switch	dev contact < 400.0 or open
Externul Switch.	collector NPN transistor from
	sensor: 6 mA sinking from internal
	4 KΩ pull-up at 24 V DC
	with Vce < 4 V DC
469 Sensor Supply:	+24 V DC at 20 mA maximum
RTD INPUTS	
3 wire RTD Types:	100 Ω Platinum (DIN.43760),
	100 ΩNickel,
	120 Ω NICKEI,
PTD Sonsing	To Mcobbei
Current:	JIIIA
Icolation	36 Vpk licelated with applea
Isolation:	36 Vpk (isolated with analog
Isolation:	36 Vpk (isolated with analog inputs and outputs) –50 to +250°C
Isolation: Range: Accuracy:	36 Vpk (isolated with analog inputs and outputs) –50 to +250°C +2°C
Isolation: Range: Accuracy: Lead Resistance:	36 Vpk (isolated with analog inputs and outputs) -50 to +250°C ±2°C 25 Ω Max per lead for Pt and Ni
Isolation: Range: Accuracy: Lead Resistance:	36 Vpk (isolated with analog inputs and outputs) -50 to +250°C ±2°C 25Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type
Isolation: Range: Accuracy: Lead Resistance: No Sensor:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}C$ $\pm 2^{\circ}C$ 25 Ω Max per lead for Pt and Ni type 3 Ω Max per lead for Cu type >1000 Ω
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:	36 Vpk (isolated with analog inputs and outputs) -50 to +250°C ±2°C 25 Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type >1000Ω <-50°C
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COLL SUPERVISIO	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type $>1000 \Omega$ $< -50^{\circ}$ C
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COLL SUPERVISIC Applicable Voltage:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C 25Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type $<-50^{\circ}$ C N 20 to 300 V DC / V AC
Isolation: Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current:	36 Vpk (isolated with analog inputs and outputs) -50 to +250°C ±2°C 25 Ω Max per lead for Pt and Ni type 3 Ω Max per lead for Cu type >1000 Ω <-50°C 20 to 300 V DC / V AC 2 to 5 mA
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current:	36 Vpk (isolated with analog inputs and outputs) -50 to +250°C \pm 2°C 25 Ω Max per lead for Pt and Ni type 3 Ω Max per lead for Cu type >1000 Ω <-50°C N 20 to 300 V DC / V AC 2 to 5 mA PUTS Oto 1 mA Ω to 2000 cc
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COLL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25Ω Max per lead for Pt and Ni type 3 \Omega Max per lead for Cu type >1000 \Omega < -50^{\circ}C N 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or $4 \pm 20 mA (retracient)$
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type $>1000 \Omega$ $< -50^{\circ}$ C 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) $236 \Omega - 100^{\circ}$ C
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Researce	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}C$ $\pm 2^{\circ}C$ 25Ω Max per lead for Pt and Ni type 3 \Omega Max per lead for Cu type $>1000 \Omega$ $< -50^{\circ}C$ 2N 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) $226 \Omega \pm 10^{\circ}$
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Range: Accuracy:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25_{Ω} Max per lead for Pt and Ni type 3_{\Omega} Max per lead for Cu type >1000 { <} -50^{\circ}C N 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) $226_{\Omega} \pm 10\%$ 0 to 21 mA $\pm 10\%$ of the scale
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Range: Accuracy: Tupe:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type $>1000 \Omega$ $< -50^{\circ}$ C 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) $226 \Omega \pm 10\%$ 0 to 21 mA $\pm 1\%$ of full scale possive
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Range: Accuracy: Type: Analoa In Sunply:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25Ω Max per lead for Pt and Ni type 3 \Omega Max per lead for Cu type $>1000 \Omega$ $< -50^{\circ}$ C N 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) $226 \Omega \pm 10\%$ 0 to 21 mA $\pm 10\%$ full scale passive ± 24 V DC at 100 mA maximum
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Range: Accuracy: Type: Analog In Supply: Resoonse Time:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}$ C $\pm 2^{\circ}$ C 25_{Ω} Max per lead for Pt and Ni type 3_{\Omega} Max per lead for Cu type >1000 Ω < -50° C N 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) $226_{\Omega} \pm 10\%$ 0 to 21 mA $\pm 11\%$ of full scale passive +24 V DC at 100 mA maximum 0, 100 ms
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm:: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Range: Accuracy: Type: Analog In Supply: Response Time:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}C$ $\pm 2^{\circ}C$ 25Ω Max per lead for Pt and Ni type 3 Ω Max per lead for Cu type $>1000 \Omega$ $< -50^{\circ}C$ DN 20 to 300 V DC / V AC 2 2 to 5 mA PUTS 0 to 1 mA, 0 to 20 mA or 4 to 20 mA (setpoint) 226 $\Omega \pm 10\%$ 0 to 21 mA $\pm 1\%$ of full scale passive $+24$ V DC at 100 mA maximum Ω 100 ms
Range: Accuracy: Lead Resistance: No Sensor: Short/Low Alarm: TRIP COIL SUPERVISIC Applicable Voltage: Trickle Current: ANALOG CURRENT IN Current Inputs: Input Impedance: Conversion Range: Accuracy: Type: Analog In Supply: Response Time:	36 Vpk (isolated with analog inputs and outputs) -50 to $+250^{\circ}C$ $\pm 2^{\circ}C$ 25Ω Max per lead for Pt and Ni type 3Ω Max per lead for Cu type $>1000\Omega$ $< -50^{\circ}C$ 20 to 300 V DC / V AC 2 to 5 mA PUTS 0 to 1 mA, 0 to 20mA or 4 to 20 mA (setpoint) 226 $\Omega \pm 10\%$ 0 to 21 mA $\pm 1\%$ of full scale passive $+24$ V DC at 100 mA maximum Ω 100 ms

Please refer to Multilin 469 Motor Protection System Instruction Manual for complete technical specifications

Technical Specifications (continued)

ANALOG OU	TPUTS						
Type:	Active						
Range:	4 to 2 with o	4 to 20 mA, 0 to 1 mA (must be specified with order)					
Accuracy:	±1% c	of full sco	ale				
Maximum	4 to 20	0 mA inp	out: 1200	Ω,			
Load:	0 to 1	mA inpu	ıt: 10 k Ω				
Isolation:	36 Vp Inputs	36 Vpk (Isolation with RTDs and Analog Inputs)					
4 Assignable Outputs:	e phase phase	A curre C cur	nt, phase rent, 3	e B curre phase	ent, average		
	currer voltag (CA) v hotte: RTD,h Power 3-pha Reacti Used, Dema kVA D Load,	current, ground current, phase AN (AB) voltage, phase BN (BC) voltage, phase AN (CA) voltage, 3 phase average voltage, hottest stator RTD, hottest bearing RTD,hottest other RTD, RTD # 1 to 12, Power factor, 3-phase Real power (kW), 3-phase Apparent power (kVA, 3-phase Reactive power (kvan), Thermal Capacity Used, Relay Lockout Time, Current Demand, kvar Demand, kW Demand, kVA Demand, Motor Load, Torque Motor					
OUTPUT REI	AYS	loique					
Contact Material: Operate Tim Max ratings	silver silver for 10000	alloy	ions	Sinc			
		operat					
VOLTA	AGE	M/C CONT.	M/C 0.2 SEC	BREAK	MAX LOAD		
VOLTA	AGE	M/C CONT.	M/C 0.2 SEC. 30A	BREAK	MAX LOAD		
VOLTA	AGE 30 VDC	M/C CONT. 10 A	M/C 0.2 SEC. 30A 30A	BREAK	MAX LOAD 300 W		
VOLTA DC Resistive	AGE 30 VDC 125 VDC 250 VDC	M/C CONT. 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A	MAX LOAD 300 W 62.5 W 75 W		
VOLTA DC Resistive DC	AGE 30 VDC 125 VDC 250 VDC 30 VDC	M/C CONT. 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A	MAX LOAD 300 W 62.5 W 75 W 150 W		
VOLTA DC Resistive DC Inductive	30 VDC 125 VDC 250 VDC 30 VDC 125 VDC	M/C CONT. 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W		
VOLTA DC Resistive DC Inductive L/R = 40 ms	AGE 30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 250 VDC	M/C CONT. 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W		
VOLTA DC Resistive DC Inductive L/R = 40 ms	30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 250 VDC 120 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive	30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 250 VDC 120 VAC 250 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 2770 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC	30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 250 VDC 120 VAC 120 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A 4 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 2770 VA 480 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Resistive P.F. = 0.4	30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 125 VDC 120 VAC 250 VAC 120 VAC 250 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A 4 A 3 A	MAX LOAD 300 W 62.5 W 75 W 31.3 W 37.5 W 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Resistive AC Inductive P.F. = 0.4	AGE 30 VDC 125 VDC 30 VDC 125 VDC 250 VDC 120 VAC 120 VAC 250 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A 4 A 3 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP	AGE 30 VDC 125 VDC 250 VDC 125 VDC 125 VDC 120 VAC 250 VAC 120 VAC 250 VAC 120 VAC 250 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A 30A 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A 4 A 3 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL PI	AGE 30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 250 VDC 120 VAC 250 VAC 250 VAC 250 VAC PLY DWER	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A 4 A 3 A	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL P: Options:	AGE 30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 250 VDC 250 VDC 250 VDC 120 VAC 250 VAC 250 VAC 250 VAC 250 VAC LO / HI (t	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.25 A 0.25 A 0.25 A 10 A 10 A 4 A 3 A d with or	MAX LOAD 300 W 62.5 W 75 W 31.3 W 37.5 W 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL P4 Options: LO Range:	AGE 30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 125 VDC 250 VDC 120 VAC 250 VAC 250 VAC PLY DWER LO / H (i DC. 20 tit LC / H (i	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 SEC. 30A 30A 30A 30A 30A 30A 30A 30A 30A 30A	BREAK 10 A 0.5 A 0.35 A 0.25 A 10 A 10 A 10 A 3 A d with or to 48 V	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 480 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL P Options: LO Range: Hi Range:	AGE 30 VDC 125 VDC 250 VDC 30 VDC 250 VDC 250 VDC 250 VAC 120 VAC 250 VAC 250 VAC PLY DWER LO / HI ((DC: 20 tc AC at 48 DC: 90 tc	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A	BREAK 10 A 0.5 A 0.25 A 0.15 A 10 A 10 A 4 A 3 A	MAX LOAD 300 W 62.5 W 75 W 31.3 W 2770 VA 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL P(Options: LO Range: Hi Range:	AGE 30 VDC 125 VDC 250 VDC 250 VDC 125 VDC 250 VDC 120 VAC 250 VAC 250 VAC 250 VAC PLY DWER LO / HI (t AC at 48 DC: 90 tt AC: 70 tt	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A 30A	BREAK 10 A 0.5 A 0.3 A 5 A 0.25 A 0.15 A 10 A 10 A 10 A 3 A d with or to 48 V to 62 Hz	MAX LOAD 300 W 62.5 W 150 W 31.3 W 37.5 W 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL P(Options: LO Range: Hi Range: Power:	AGE 30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 125 VDC 120 VAC 250 VAC 120 VAC 250 VAC 250 VAC 250 VAC 250 VAC DC 20 tr AC at 48 DC: 90 tr AC: 70 tc 45 VA (The second seco	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A 30A X X X X X X X X	BREAK 10 A 0.5 A 0.25 A 0.15 A 10 A 10 A 10 A 3 A d with or to 48 V to 62 Hz	MAX LOAD 300 W 62.5 W 75 W 150 W 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL P(Options: LO Range: Hi Range: Proper operor	AGE 30 VDC 125 VDC 250 VDC 250 VDC 250 VDC 250 VDC 250 VAC 250 VAC 250 VAC 250 VAC PLY DC: 20 tr AC at 48 DC: 90 tr AC: 70 tr 45 VA (m vtion time v	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0.2 30A 30A	BREAK 10 A 0.5 A 0.25 A 0.25 A 0.25 A 10 A 4 A 3 A d with or to 48 V to 62 Hz 1 oltage: 30	MAX LOAD 300 W 62.5 W 75 W 150 W 2770 VA 2770 VA 2770 VA 480 VA 750 VA		
VOLTA DC Resistive DC Inductive L/R = 40 ms AC Resistive AC Inductive P.F. = 0.4 POWER SUP CONTROL PC Options: LO Range: Hi Range: Proper operco	AGE 30 VDC 125 VDC 250 VDC 30 VDC 125 VDC 125 VDC 125 VDC 120 VAC 250 VAC 120 VAC 250 VAC	M/C CONT. 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	M/C 0,2 30A 30A 30A	BREAK 10 A 0.5 A 0.25 A 0.25 A 0.15 A 10 A 10 A 4 A 3 A d with or to 48 V to 62 Hz ll lltage: 30	MAX LOAD 300 W 62.5 W 75 W 150 W 31.3 W 37.5 W 2770 VA 2770 VA 480 VA 750 VA der)		

	1.11.		ICP
RS	232	Por	rt۰

VJZJZ FUIL	I, FIORICFUREL, HORFISOIULEU
RS485 Ports:	2, Isolated together at 36 Vpk
Baud Rates:	RS485: 300 - 19,200 Baud
	programmable parity RS232: 9600
Parity:	None, Odd, Even
Protocol:	Modbus® RTU / half duplex
Ethernet Port:	10BaseT, RJ45 Connector,
	ModBus® RTU over TCP/IP

Ordering

469	*	*	*	*	*	
469			1			Basic Unit
	P1					1 A phase CT secondaries
	P5					5 A phase CT secondaries
		LO				DC: 24 - 60 V; AC: 20 - 48 V @ 48 -62 Hz control power
		HI				DC: 90 - 300 V; AC: 70 - 265 V @ 48 -62 Hz control power
			A1			0 - 1 mA analog outputs
		/	420			4 - 20 mA analog outputs
				Ď		DeviceNet
				E		Enhanced front panel
				Т		Enhanced front panel with Ethernet 10BaseT option
					Н	Harsh (Chemical) Environment Conformal Coating

MONITORING	
POWER FACTOR	
Range:	0.01 lead or lag to 1.00
Pickup Level:	0.99 to 0.05 in steps of 0.01.
	Lead & Laa
Time Delay:	0.2 to 30.0 s in steps of 0.1
Plack From Starts	0 to 5000 c in stops of 0.1
Dickup Accuracy	.0.02
Timing Accuracy:	±0.02
Timing Accuracy:	±100 ms or ±0.5% or total time
Elements:	Trip and Alarm
3-PHASE REAL POV	VER
Range:	0 to ±99999 kW
Underpower Pkp:	1 to 25000 kW in steps of 1
Time Delay:	1 to 30 s in steps of 1
Block From Start:	0 to 15000 s in steps of 1
Pickup Accuracy:	at lava < 2 x CT: ±1%
	of √3 x 2 x CT x VT x VT full scale at
	lava > 2 x CT±1.5% of 3 x 20 x CT x
	VT x VT full scale
Timing Accuracy	+0.5 s or +0.5% of total time
Flements	Trip and Alarm
3-PHASE APPARENT	POWER
Pango:	0 to 65535 kVA at lava < 2 v CT:
Nullge.	$\pm 104 \text{ of } \sqrt{3} \text{ y } 2 \text{ y } \text{CT } \text{ y } \text{VT } \text{y } \text{VT}$
	full scale at lava > 2 v CT+1 5% of v
	3 v 20 v CT v VT v VT full coolo
	CT w//T w//Tfull scale
3-PHASE REACTIVE	
Range:	0 LO ±999999 KW
PICKUP Level:	±1 to 25000 kw in steps of 1
Time Deldy:	0.2 to 30.0 s in steps of 1
Block From Start:	0 to 5000 s in steps of 1
Pickup Accuracy:	at lavg < 2 x CT: ±1% of ?3 x 2 x CT
	x VT x VTfull scale at lavg > 2 x CT:
	±1.5% of √3 × 20 × CT × VT × VT
	full scale
Timing Accuracy:	±100 ms or ±0.5% of total time
Elements:	Trip and Alarm
OVERTORQUE	
Pickup Level:	1.0 to 999999.9 Nm/ft·lb in steps of
	0.1; torque unit is selectable under
	torque setup
Time Delay:	0.2 to 30.0 s in steps of 0.1
Pickup Accuracy:	±2.0%
Time Accuracy:	±100 ms or 0.5% of total time
Elements:	Alarm (INDUCTION MOTORS ONLY)
METERED REAL EN	ERGY CONSUMPTION
Description:	Continuous total real power
	consumption
Range:	0 to 999999.999 MW hours.
Timing Accuracy:	±0.5%
Update Rate:	5 seconds
METERED REACTIV	E ENERGY CONSUMPTION
Description:	Continuous total reactive power
	consumption
Ranae:	0 to 999999.999 Mvar hours
Timing Accuracy	+0.5%
Undate Rate	5 seconds
METERED REACTIV	E POWER GENERATION
Description:	Continuous total reactive power
Description.	dependion
Range:	0 to 2000000 000 Myar-bours
Timing Accuracy:	+0.5%
Undato Pato:	5 soconds
	2 2001102

PRODUCT TESTS		
Thermal Cycling: Dielectric Streng	th:	Operational test at ambient, reducing to -40°C and then increasing to 60°C 2.0 kV for 1 minute from relays, CTs, VTs, power supply to Safety Ground
TYPE TESTS		Siouna
Dielectric	EN	60255-5
voltage		
Impulse	ΕN	60255-5
withstand:		
Damped	IEC	61000-4-18 / IEC 60255-22-1
Electrostatic	ΕN	51000-4-2 / IEC 60255-22-2
RF immunity:	ΕN	61000-4-3 / IEC 60255-22-3
Fast Transient	ΕN	51000-4-4 / IEC 60255-22-4
Surge Immunity:	ΕN	61000-4-5 / IEC 60255-22-5

EN61000-4-6 / IEC 60255-22-6 CISPR11 / CISPR22 / IEC 60255-25

IEEE / ANSIC37.90.3 UL508 / UL C22.2-14 / UL1053

IEC 60255-21-1 IEC 61000-4-11

IEC 60529

IEC 60068-2-1

IEC 60068-2-2

CERTIFIC	CATION
ISO:	Manufactured under an ISO9001 registered system.
CE:	EN60255-5 / EN60255-27 / EN61010-1 / EN50263
cULus:	UL508 / UL1053 / C22.2.No 14

ENVIRONMENTAL Te Oj Ar

A Pi IP

Conducted RF Immunity: Radiated &

Radiated & Conducted Emissions: Sinusoidal Vibration: Voltage Dip & interruption:

Ingress Protection: Environmental (Cold):

Environmental (Dry heat): ESD:

Safety:

emperature kange:	
perating:	-40 °C to +60 °C
mbient Storage:	-40 °C to +80 °C
mbient Shipping:	-40 °C to +80 °C
umidity:	Operating up to 95% (non
	condensing) @ 55C
ollution degree:	2
Rating:	IP40 (front), IP20 (back)

GEGridSolutions.com

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

Copyright 2017, General Electric Company. All Rights Reserved.

