ALLEN-BRADLEY

1326AB High Performance AC Servomotors

Product Data

Introduction

This publication provides detailed information about 1326AB AC Servomotors. The topics covered in this publication are listed below in order of presentation.

page	2
page	2
page	4
page	8
page [·]	17
page [·]	18
page 2	22
page 2	28
page :	30
page 4	44
	page page page page page page page

Basic Servomotor Description

The 1326AB Servomotors are a family of high performance, three-phase, brushless AC synchronous motors designed by Allen-Bradley to meet the stringent requirements of servo system applications. This series of standard AC servomotors can be used with 1391 AC Servo Controllers. The performance parameters of these motors with selected amplifiers are listed on page 8. The typical speed-torque curves (see page 9) depict the operational envelope of these motor and controller combinations.

Each motor has the following standard features:

- Permanent magnet rotor for increased servo response.
- Three-phase sinusoidal wound stator field for direct transfer of heat to ambient, and smooth operation at low speeds.
- Brushless resolver supplies position, commutation & velocity feedback information. This also provides durability in harsh environments by not having on-board electronics in the motor. 1391 A Quad B (optional) encoder output (up to 2048 ppr) is generated via resolver feedback.
- 100% continuous rated output torque at stall (zero rpm).
- Precision balance of 0.0005" (0.0127 mm) total peak-peak displacement.
- Vertical shaft up or down mounting.
- TENV construction.
- IP65 rated (when used with the Shaft Seal option) to withstand harsh environments. Motor is dust-tight and able to withstand pulsating water jets without liquid entering the motor.

Important: 1326AB motors lose the IP 65 rating when externally mounted encoder/resolver feedback or blower packages are used.

- Normally closed thermal switch in the motor winding (rated 115V AC at 1A, 24V DC at 1A) provides thermal overload indication.
- Environmentally sealed power and feedback cable packages. Power and resolver feedback cables can be ordered as standard (flex), track (multi-flex) or extended length (ES).
- MIL spec connectors are standard.
- Ferrite magnets for cost effective performance.
- UL recognized insulation system (file # E57948).

Options available for the 1326AB include (option code designation or catalog number in parenthesis):

- Integral spring-set holding brakes with 90V DC coils (-A4, -A5, -A7) or 24V DC coils (-K4, -K5, -K7).
- Brake Power Supply (1326-MOD-BPS) converts 115V AC to the voltage needed for 90V DC brakes (-A4, -A5 and -A7).
- Shaft Oil Seal kits (1326AB-MOD-SSV-xx) for field installation of Viton shaft seals. Motor disassembly is not required.
- NEMA Inch (-11) or IEC metric flange mount (-21) with metric shafts.

Servomotor Options

- Resolver Feedback Packages (1326AB-MOD-Vxxxx) provide 4.25" (108 mm) transducers which offer absolute/vernier or single brushless resolver feedback for use with Allen-Bradley 8600GP, IMC rack and S Class motion controllers.
- Junction Box Kit (1326AB-MOD-RJxx) available with axially mounted connectors. Connector version allows the motor connectors to be brought out axially to the motor (rather than radially) without further wiring.
- Secondary Feedback Mounting Kits (1326AB-MOD-Mx) for field installation of an Allen-Bradley Encoder (845H) or resolver. Using a 1326AB motor with a 1391B-ES (or 1391-DES) with A Quad B feedback (up to 2048 ppr) eliminates the need for encoder mounting.
- Blower Cooling Kit (1326AB-MOD-G3, G4) provides air over cooling for up to 35% more torque output on most 1326AB "C" frame motors. The kit can be field mounted on the rear of 1326AB-Cxx motors (including motors with brakes). For motors using secondary motor mounted feedback (1326AB-MOD-M60), use option "G4."
- Cables for power (1326-CPxx . .) and feedback (1326-CFx . . commutation, 1326-CEx . . - encoders) are available in lengths up to 100 ft .(30 m) for standard and high flex applications Power (1326ES-CPxx . .) and commutation (1326ES-CFx . .) cables over 100 ft. (30 m), up to 300 ft. (90 m) are available when using 1391B-ES or 1391-DES drives only.

All kits are supplied as motor accessories and must be specified as a separate item.

1326AB Servomotor

¹ "A" Series motors with brake must use 1326AB-MOD-SSV-A2.

BPS

² Up to 4 brakes per rectifier can be used.

Motor Junction Box Kit³

1326AB – MOD – RJAB

³ The motor comes standard with IP65 plug style connectors mounted radially to the motor. This kit allows the connectors to be brought out axially from the motor without further wiring. Kit includes Motor Junction Box and Mounting Hardware.

Feedback Mounting Adapter Kit⁴

1326AB – MOD – M40

⁴ All kits contain a feedback device mounting adapter and mounting hardware. M40, M50 and M60 include a motor to encoder coupling. M22 and M23 do not include a coupling since it is included with the resolver feedback device.

Feedback Coupling 5

⁵ The feedback coupling is included as standard with all Feedback Mounting Adapter Kits.

Blower Mod Kit

1326AB – MOD – G3

Power and Feedback Cables

1326	-	С		Р		AB		Т	15	5
First Position	Secor	nd Position	Third	Position	Four	th Position	Fifth P	osition	Sixth	Position
Bulletin Number	Туре		Func	tion	Moto Useo	or Size I On	Power Cable	Track	Cabl Lenç	e jth
Letter Description	Letter	Description	Letter	Description	Code	Туре	Letter	Description	Code	Description
Blank Standard Cable ES ⁷ Extended length cable – used	С	Connector & Cable Assembly	Р	Power Connection	AB C	Series A & B (except 1326AB-B4) Series C &	Т	All Series, used for high flex applications	K 15	Connector Kit (No Cable) 15' (4.6 m)
with 1391B-ES and 1391-DES Only			F E V	Commutation & Feedback Connection 845H Encoder All 4.25" (108 mm) Resolver Packages	U	All Series	Blank	Standard Cable	30 50 100 150 200 250 300	30' (9.1 m) 50' (15.2 m) 100' (30.4 m) 150' (45.7 m) ⁷ 200' (61 m) ⁷ 250' (76.2 m) ⁷ 300' (91.4 m) ⁷

⁷ The Extended Length option is only available for 1326-CFUxx, CPABxx and CPCxx cables and can only be used with 1391B-ES and 1391-DES drives.

Servomotor Performance Data

The following section contains 1326AB performance data. Included is a Selection List detailing the performance parameters of selected amplifier/ motor combinations, followed by typical speed-torque curves.

1391B Servo System Selection List ^{1, 2}

Continuous Stall Torque (lbin./N-m)	Peak Stall Torque (lbin./N-m)	1391B Rated Speed (rpm)	Motor Catalog Number	Servo Amplifier Catalog Number	Amperes at Continuous Torque	Rotor Inertia (lbins²/kg-m²)	Rated Output (kW)
16/1.8	48/5.4	5000	1326AB-A1G	1391B-AA15	4.5	0.004/0.0005	0.9
32/3.6	96/10.84	3000	1326AB-A2E	1391B-AA15	5.2	0.007/0.0008	1.1
48/5.4	96/10.84	3000	1326AB-A3E	1391B-AA15	7.8	0.010/0.001	1.2
93.3/10.53	186.6/21.0	3000	1326AB-B2E	1391B-AA15	15.0	0.05/0.006	2.28
102/11.5	204/23.0	3000	1326AB-B2E	1391B-AA22	16.4	0.05/0.006	2.5
140/15.8	280/31.6	3000	1326AB-B3E	1391B-AA22	22.5	0.08/0.009	3.5
153/17.3	306/34.6	3000	1326AB-B3E	1391B-AA45	24.6	0.08/0.009	3.8
210/23.7	420/47.5	3000	1326AB-C2E	1391B-AA45	33.2	0.14/0.015	5.2
310/35.0	568/64.1	3000	1326AB-C3E	1391B-AA45	49.1	0.22/0.024	7.5
420/47.4	811/91.7	2000	1326AB-C4C	1391B-AA45	46.6	0.29/0.032	7.0
420/47.4	840/94.8	1600	1326AB-C4B	1391B-AA45	38.2	0.29/0.032	5.6

1391B-ES/1391-DES Servo System Selection List ^{1, 2}

Continuous Stall Torque (lbin./N-m)	Peak Stall Torque (lbin./N-m)	1391B Rated Speed (rpm)	Motor Catalog Number	Servo Amplifier Catalog Number ⁴	Amperes at Continuous Torque	Rotor Inertia (Ibins ² /kg-m ²)	Rated Output (kW)
16/1.8	48/5.4	6000	1326AB-A1G	1391B-ESAA15	4.5	0.004/0.0005	0.9
32/3.6	96/10.84	4000	1326AB-A2E	1391B-ESAA15	5.2	0.007/0.0008	1.1
48/5.4	144/16.3	4000	1326AB-A3E	1391B-ESAA15	7.8	0.010/0.001	1.6
93.3/10.53	170.7/19.3	4000	1326AB-B2E	1391B-ESAA15	15.0	0.05/0.006	3.0
102/11.5	279/31.5	4000	1326AB-B2E	1391B-ESAA22	16.4	0.05/0.006	3.3
140/15.8	280/31.6	4000	1326AB-B3E	1391B-ESAA22	22.5	0.08/0.009	4.7
153/17.3	459/51.9	4000	1326AB-B3E	1391B-ESAA45	24.6	0.08/0.009	5.1
210/23.7	569/64.3	4000	1326AB-C2E	1391B-ESAA45	33.2	0.14/0.015	6.9
310/35.0	568/64.1	4000	1326AB-C3E	1391B-ESAA45	49.1	0.22/0.024	10.0
420/47.4	811/91.7	3000	1326AB-C4C	1391B-ESAA45	46.6	0.29/0.032	9.3 ³
420/47.4	989/111.8	2000	1326AB-C4B	1391B-ESAA45	38.2	0.29/0.032	7.5

¹ All ratings are for 40° C motor ambient,110° C case and 60° C amplifier ambient. For extended ratings at lower ambients contact Allen-Bradley.

² The motor contains two thermal switches wired in series that will open on an overtemperature condition. They are set to open at 150° C (typical) and close at 90-100° C (typical). Contacts are rated for 1A at 115V AC, 1A at 24V DC.

 3 –10% line voltage maximum.

⁴ Use either 1391B-ES or 1391-DES drives.

Figure 2 Typical 1326AB Speed-Torque Curve

Speed-Torque Curves

Typical speed-torque curves for the standard 1326AB servomotors are contained on the following pages. Definitions of the terms used are provided below.

Tc – rated torque of motor with windings at rated temperature and an ambient of 40°C. The controller is operating in a rated ambient of 60°C.

Tp – the peak torque that can be produced by the motor/controller combination with both at rated temperature and the motor in a 40°C ambient and the controller in a 60°C ambient. Since 200% current torque peaks are common in many applications for optimal controller usage, the following curves show typical system performance. Higher peak torques are permissible where RMS torque is less than or equal to the rated torque (Tc). 1391B-ES/1391-DES operation is shown in the outer envelope and will show higher speed and 300% torque capability.

Rated Speed – the operating speed of the controller and motor combination at which a minimum of 70% of continuous rated torque (Tc) can be developed. This point is defined with the motor at 25° C and controller operating in a 60° C ambient.

Rated Operation Area – boundary of speed-torque curve where the motor and controller combination may operate on a servo basis without exceeding the RMS rating of either. See page 31 for formula details.

RMS Torque =
$$-\sqrt{\frac{\text{Tpa}^2 x t_1 + \text{Tss}^2 x t_2 + \text{Tpd}^2 x t_3 + \text{Tr}^2 x t_4}{t_1 + t_2 + t_3 + t_4}}}$$

Intermittent Operation Area – Boundary of speed-torque curve where the motor and controller combination may operate in acceleration-deceleration mode without exceeding peak rating of either, provided that the duty cycle RMS continuous torque limit is not exceeded.

Continuous Current – Rated current of motor with windings at rated temperature and an ambient of 40° C. The controller is operating in a rated ambient of 60° C.

Peak Current – The amount of current which can be applied to the motor without causing damage to the motor.

Mechanical Time Constant – Time taken by the motor to reach 63% of final speed when a step voltage is applied.

Electrical Time Constant – The time required for the motor to reach 63% of rated current.

Max. Ambient Temperature – Maximum environmental temperature in which the motor can be operated at rated loads without exceeding its insulation type temperature rise limits.

Insulation Class – Designation of operating temperature limits of the motor insulation materials.

Thermal Time Constant – Time for motor windings to reach 63% of continuous temperature rise with constant watts loss.

Torque Constant – At the stated motor temperature the amount of torque developed for one ampere of motor current.

Voltage Constant – Value of the generated voltage at a specified speed when the rotor is moved mechanically in the magnetic field.

Terminal Resistance – Winding resistance.

Inductance – Winding inductance measured by a step input of zero impedance voltage applied to the locked rotor.

Rotor Polar Moment of Inertia – Moment of inertia about the axis of rotation.

Motor Weight – Weight of the complete motor (including brake, if supplied) less the weight of options.

Balance – Compensation of rotor weight distribution to reduce vibrational resonance. Motors are factory balanced under running speeds.

Speed-torque curves show the rated performance of the servomotor in a 40 degree C ambient. Motor is at full rated temperature. Motor windings are at 150 degrees C with a 110 degree C rise over ambient. Motor case temperature is at approximately 100 degrees C.

Important: Curves and performance data shown are for motor and amplifier combinations where amplifier rating is equal to or greater than Ic of motor

Category	Parameter		Units	1326AB-A1G	1326AB-A2E
General	Continuous Stall Torque at 40° Rated Output/1391B-ES, DES F Peak Stall Torque/1391B-ES, D Continuous Stall Current ³ Peak Stall Current/1391B-ES, D Mechanical Time Constant ³ Electrical Time Constant ³ Rated Speed/1391B-ES, DES F	C Ambient Rated Output ES Peak Stall Torque ³ ES Peak Stall Current ³ Rated Speed ³	Ibin. (N-m) kW Ibin. (N-m) amperes amperes milliseconds milliseconds rpm	16.0 (1.8) 0.7/0.9 32.0 (3.6)/48.0 (5.4) 4.5 9.0/13.5 10.0 3.4 5000/6000	32.0 (3.6) 0.8/1.1 64.0 (7.2)/96.0 (10.8) 5.2 10.4/15.6 9.2 3.4 3000/4000
Thermal	Maximum Ambient Temperature Insulation Class Thermal Time Constant	(without derating)	degrees C minutes	40.0 H 23	40.0 H 33
Winding	Torque Constantat 25° CVoltage ConstantRMS (L-L) at 25° CTerminal Resistanceohms (L-L) at 25° CInductancemH (L-L) at 25° C		lbin. (N-m)/A volts/1000 rpm ohms millihenry	4.18 (0.47) 28.5 1.9 8.4	7.23 (0.82) 49.5 2.89 12.7
Mechanical	Rotor Polar Moment of Inertia Motor Weight Balance ¹		lbins ² (kg-m ²) lbs. (kg) in. (mm) ²	0.004 (0.0005) 22 (10.0) 0.0005 (0.0127)	0.007 (0.0008) 28 (12.7) 0.0005 (0.0127)

 1 To obtain vibration velocity in inches (mm)/second use the following formula: V_V = (D_{p-p} x rpm) / 27.01 where: D_{p-p} = peak-peak displacement in in. (mm) V_V = Vibration velocity in in. (mm)/second rpm = motor speed

² peak-peak displacement

 $^3\,$ at 40° C

Figure 4 1326AB-A3E and B2E Motor Performance Curves

Speed-torque curves show the rated performance of the servomotor in a 40 degree C ambient. Motor is at full rated temperature. Motor windings are at 150 degrees C with a 110 degree C rise over ambient. Motor case temperature is at approximately 100 degrees C.

Important: Curves and performance data shown are for motor and amplifier combinations where amplifier rating is equal to or greater than Ic of motor

Category	Parameter		Units	1326AB-A3E	1326AB-B2E
General	Continuous Stall Torque at 40° C Rated Output/1391B-ES, DES R Peak Stall Torque/1391B-ES, DE Continuous Stall Current ³ Peak Stall Current/1391B-ES, D Mechanical Time Constant ³ Electrical Time Constant ³ Rated Speed/1391B-ES, DES R	C Ambient ated Output ES Peak Stall Torque ³ ES Peak Stall Current ³ ated Speed ³	lbin. (N-m) kW lbin. (N-m) amperes amperes milliseconds milliseconds rpm	48.0 (5.4) 1.2/1.6 96.0 (10.84)/144.0 (16.3) 7.8 15.6/23.4 8.6 3.4 3000/4000	102.0 (11.5) 2.5/3.3 204 (23.0)/279 (31.5) 16.4 32.8/44.9 7.8 7.7 3000/4000
Thermal	Maximum Ambient Temperature Insulation Class Thermal Time Constant	(without derating)	degrees C minutes	40.0 H 38	40.0 H 56
Winding	Torque Constantat 25° CVoltage ConstantRMS (L-L) at 25° CTerminal Resistanceohms (L-L) at 25° CInductancemH (L-L) at 25° C		lbin. (N-m)/A volts/1000 rpm ohms millihenry	7.24 (0.82) 49.5 1.9 8.4	7.31 (0.83) 49.9 0.35 3.52
Mechanical	Rotor Polar Moment of Inertia Motor Weight Balance ¹		lbins ² (kg-m ²) lbs. (kg) in. (mm) ²	0.010 (0.001) 37 (16.8) 0.0005 (0.0127)	0.050 (0.006) 61 (27.7) 0.0005 (0.0127)

 1 To obtain vibration velocity in inches (mm)/second use the following formula: V_V = (D_{p-p} x rpm) / 27.01 where: D_{p-p} = peak-peak displacement in in. (mm) V_V = Vibration velocity in in. (mm)/second

rpm = motor speed

² peak-peak displacement

³ at 40° C

Speed-torque curves show the rated performance of the servomotor in a 40 degree C ambient. Motor is at full rated temperature. Motor windings are at 150 degrees C with a 110 degree C rise over ambient. Motor case temperature is at approximately 100 degrees C.

Important: Curves and performance data shown are for motor and amplifier combinations where amplifier rating is equal to or greater than Ic of motor

Category	Parameter		Units	1326AB-B3E	1326AB-C2E
General	Continuous Stall Torque at 40° C Rated Output/1391B-ES, DES Ra Peak Stall Torque/1391B-ES, DE Continuous Stall Current ³ Peak Stall Current/1391B-ES, DE Mechanical Time Constant ³ Electrical Time Constant ³ Rated Speed/1391B-ES, DES Ra	Ambient ated Output S Peak Stall Torque ³ S Peak Stall Current ³ ted Speed ³	Ibin. (N-m) kW Ibin. (N-m) amperes amperes milliseconds milliseconds rpm	153.0 (17.3) 3.8/5.1 306.0 (34.6)/459.0 (51.9) 24.6 49.2/73.8 8.6 7.4 3000/4000	210.0 (23.7) 5.2/6.9 420.0 (47.4)/569.0 (64.3) 33.2 66.4/90 5.3 13.1 3000/4000
Thermal	Maximum Ambient Temperature Insulation Class Thermal Time Constant	without derating)	degrees C minutes	40.0 H 66	40.0 H 71
Winding	Torque Constantat 25° CVoltage ConstantRMS (L-L) at 25° CTerminal Resistanceohms (L-L) at 25° CInductancemH (L-L) at 25° C		lbin. (N-m)/A volts/1000 rpm ohms millihenry	7.3 (0.82) 49.9 0.234 2.35	7.44 (0.84) 50.5 0.088 1.5
Mechanical	Rotor Polar Moment of Inertia Motor Weight Balance ¹		lbins ² (kg-m ²) lbs. (kg) in. (mm) ²	0.080 (0.009) 76 (34.5) 0.0005 (0.0127)	0.140 (0.015) 102 (46.3) 0.0005 (0.0127)

 1 To obtain vibration velocity in inches (mm)/second use the following formula: V_V = (D_{p-p} x rpm) / 27.01 where: D_{p-p} = peak-peak displacement in in. (mm) V_V = Vibration velocity in in. (mm)/second

rpm = motor speed

² peak-peak displacement

³ at 40° C

Figure 6 1326AB-C3E and C4C Motor Performance Curves

Speed-torque curves show the rated performance of the servomotor in a 40 degree C ambient. Motor is at full rated temperature. Motor windings are at 150 degrees C with a 110 degree C rise over ambient. Motor case temperature is at approximately 100 degrees C.

Important: Curves and performance data shown are for motor and amplifier combinations where amplifier rating is equal to or greater than Ic of motor

Category	Parameter		Units	1326AB-C3E	1326AB-C4C
General	Continuous Stall Torque at 40° C Rated Output/1391B-ES, DES R Peak Stall Torque/1391B-ES, DE Continuous Stall Current ³ Peak Stall Current/1391B-ES, DI Mechanical Time Constant ³ Electrical Time Constant ³ Rated Speed/1391B-ES, DES Ra	Ambient ated Output S Peak Stall Torque ³ S Peak Stall Current ³ ated Speed ³	Ibin. (N-m) kW Ibin. (N-m) amperes amperes milliseconds milliseconds rpm	310.0 (35.0) 7.5/10.0 568.0 (64.1)/568.0 (64.1) 49.1 90.0/90.0 6.0 13.0 3000/4000	420.0 (47.5) 7.0/9.3 811.0 (91.7)/811.0 (91.7) 46.6 90.0/90.0 5.6 13.1 2000/3000
Thermal	Maximum Ambient Temperature Insulation Class Thermal Time Constant	(without derating)	degrees C minutes	40.0 H 86.0	40.0 H 95.0
Winding	Torque Constantat 25° CVoltage ConstantRMS (L-L) at 25° CTerminal Resistanceohms (L-L) at 25° CInductancemH (L-L) at 25° C		lbin. (N-m)/A volts/1000 rpm ohms millihenry	7.44 (0.84) 50.5 0.059 1.0	10.6 (1.20) 72.4 0.09 1.54
Mechanical	Rotor Polar Moment of Inertia Motor Weight Balance ¹		lbins ² (kg-m ²) lbs. (kg) in. (mm) ²	0.220 (0.024) 138 (62.6) 0.0005 (0.0127)	0.290 (0.032) 170 (77.1) 0.0005 (0.0127)

 1 To obtain vibration velocity in inches (mm)/second use the following formula: V_V = (D_{p-p} x rpm) / 27.01 where: D_{p-p} = peak-peak displacement in in. (mm) V_V = Vibration velocity in in. (mm)/second

rpm = motor speed

² peak-peak displacement

 $^3\,$ at 40° C

Speed-torque curves show the rated performance of the servomotor in a 40 degree C ambient. Motor is at full rated temperature. Motor windings are at 150 degrees C with a 110 degree C rise over ambient. Motor case temperature is at approximately 100 degrees C.

Important: Curves and performance data shown are for motor and amplifier combinations where amplifier rating is equal to or greater than Ic of motor

Category	Parameter		Units	1326AB-C4B
General	Continuous Stall Torque at 40° (Rated Output/1391B-ES, DES R Peak Stall Torque/1391B-ES, DI Continuous Stall Current ³ Peak Stall Current/1391B-ES, D Mechanical Time Constant ³ Electrical Time Constant ³ Rated Speed/1391B-ES, DES R	C Ambient Cated Output ES Peak Stall Torque ³ ES Peak Stall Current ³ Pated Speed ³	lbin. (N-m) kW lbin. (N-m) amperes amperes milliseconds milliseconds rpm	420.0 (47.5) 5.6/7.5 840.0 (94.8)/989.0 (111.8) 38.2 76.4/90 5.4 13.25 1600/2000
Thermal	Maximum Ambient Temperature Insulation Class Thermal Time Constant	(without derating)	degrees C minutes	40.0 H 95.0
Winding	Torque Constantat 25° CVoltage ConstantRMS (L-L) at 25° CTerminal Resistanceohms (L-L) at 25° CInductancemH (L-L) at 25° C		lbin. (N-m)/A volts/1000 rpm ohms millihenry	13.0 (1.47) 89.5 0.133 2.212
Mechanical	Rotor Polar Moment of Inertia Motor Weight Balance ¹		lbins ² (kg-m ²) lbs. (kg) in. (mm) ²	0.29 (0.032) 170 (77.1) 0.0005 (0.0127)

 1 To obtain vibration velocity in inches (mm)/second use the following formula: V_V = (D_{p-p} x rpm) / 27.01 where: D_{p-p} = peak-peak displacement in in. (mm) V_V = Vibration velocity in in. (mm)/second rpm = motor speed

² peak-peak displacement

 $^3\,$ at 40° C

Figure 8 Motor Output Shaft Radial Load vs. Thrust Load

_

Special Order Motor Information

Motors having operating characteristics different from standard motors are available as a special order item. Refer to the data listed below. For ordering and delivery information, contact your local Allen-Bradley Sales Office.

Table A
Non-Stocked Motor Specifications

otor atalog Number	Tc ¹ Ibin. (N-m)	lc ¹ A	Tp ^{1, 2} Ibin. (N-m)	lp ¹ A	Rated Speed rpm	Mech. Time Constant	Elec. Time Constant	Rated Output kW	Thermal Time Constant	Inertia Ibin s ² (kg-m ²)	Kt Ibin./A (N-m/A)	Ke ³ V/rpm L-L	Rt mH L-L	L mH L-L
326AB-A1E	16 (1.8)	2.6	32 (3.6)	5.2	3000	10.40ms	3.4ms	0.3	23 min	0.004 (0.0005)	7.24 (0.82)	49.5	5.710	25.20
326AB-A2G	32 (3.6)	9.0	64 (7.2)	18.0	5000	9.10ms	3.4ms	1.3	33 min	0.007 (0.0008)	4.18 (0.47)	28.5	0.950	4.19
326AB-A3G	48 (5.4)	13.5	96 (10.8)	27.0	5000	8.60ms	3.4ms	2.0	38 min	0.010 (0.001)	4.18 (0.47)	28.5	0.634	2.80
326AB-B1C	51 (5.8)	5.7	102 (11.5)	11.4	2000	9.80ms	7.3ms	0.8	40 min	0.030 (0.003)	10.50 (1.19)	71.7	1.450	14.60
326AB-B1E	51 (5.8)	8.2	102 (11.5)	16.4	3000	9.86ms	7.4ms	1.3	40 min	0.030 (0.003)	7.30 (0.82)	49.9	0.700	7.10
326AB-B2C	102 (11.5)	11.4	204 (23.1)	22.8	2000	7.90ms	7.6ms	1.7	56 min	0.050 (0.006)	10.50 (1.19)	71.7	0.726	7.30
326AB-B3C	153 (17.3)	17.0	306 (34.6)	34.0	2000	8.34ms	7.7ms	2.5	66 min	0.080 (0.009)	10.60 (1.20)	72.4	0.490	4.93
326AB-C1C	105 (11.9)	11.7	210 (23.7)	23.4	2000	6.40ms	12.6ms	1.7	47 min	0.080 (0.009)	10.60 (1.20)	50.5	0.360	6.20
326AB-C1E	105 (11.9)	16.6	210 (23.7)	33.2	3000	6.30ms	12.6ms	2.6	47 min	0.080 (0.009)	7.44 (0.84)	72.4	0.176	3.00
326AB-C2C	210 (23.7)	23.3	420 (47.5)	46.6	2000	5.40ms	13.1ms	3.5	71 min	0.140 (0.016)	10.60 (1.20)	72.4	0.180	3.08
326AB-C3C	310 (35.0)	34.4	620 (70.1)	68.8	2000	5.60ms	13.4ms	5.0	86 min	0.220 (0.024)	10.60 (1.20)	72.4	0.120	2.10

1 at 40° C

² for 200% current settings

 3 $\,$ at 25 $^\circ$ C $\,$

Motor Weights

(standard without options)

atalog	Weight
Number	Ibs. (kg)
326AB-A1E 326AB-A2G 326AB-A3G 326AB-B1C 326AB-B1E 326AB-B1E 326AB-B2C 326AB-B3C	22 (10.0) 28 (12.7) 37 (16.8) 44 (20.0) 44 (20.0) 61 (27.7) 76 (34.5)
326AB-C1C	75 (34.0)
326AB-C1E	75 (34.0)
326AB-C2C	102 (46.3)
326AB-C3C	138 (62.6)

Servomotor Dimensions

The following figures provide approximate dimensions for the 1326AB face and flange mount motors, respectively.

Figure 9 Motor Dimensions – 1326AB-Axx Series Servomotor

Standard Inch Combination Face/Flange Mount (in inches)

Catalog Number	Description	AD	AG	AH	AK ¹	С	0	U ²	Кеу
1326AB-A1x-11	without brake	8.69	10.44	2.00	2.500	12.44	4.38	0.6250	0.19 x 0.19 x 1.38
1326AB-A2x-11		10.94	12.69	2.00	2.500	14.69	4.38	0.6250	0.19 x 0.19 x 1.38
1326AB-A3x-11		13.19	14.94	2.00	2.500	16.94	4.38	0.6250	0.19 x 0.19 x 1.38
1326AB-Axx-11-K4	with optional 24V DC, 7	2 lbin. bra	ke	add 2.25 inches to AD, AG and C					
1326AB-Axx-11-A4	with standard 90V DC,	72 lbin. bra	ike	add 2.25 inches to AD, AG and C					
BF1 = 0.312 - 18 tag	oped hole, 0.38 deep					1	Shaft Runo	ut	0.002 T.I.R.
BF2 = 0.344 dia.							Shaft Endp	lay	0.005 T.I.R.
AJ1 = 3.250							Pilot Eccen	tricity	0.004 T.I.R.
AJ2 = 5.0							Maximum F	ace Runout	0.004 T.I.R.
BB = 0.125									
F = 0.56									
¹ +0.000, -0.003	² +0.000, -0.000)5	BF	1 & AJ1 are f	ound on Eng	lish units o	only.		

Metric Flange Mount (in millimeters)

Catalog Number	Description	AD	AG	AH ³	AK ⁴	С	0	U ⁵	Кеу
1326AB-A1x-21	without brake	278	297	40	95	337	111	19	6 x 6 x 30
1326AB-A2x-21		335	354	40	95	394	111	19	6 x 6 x 30
1326AB-A3x-21		392	411	40	95	451	111	19	6 x 6 x 30
1326AB-Axx-21-K4	with optional 24V DC, 8.1 N-m brake a				dd 57 millir	neters to <i>I</i>	AD, AG and	d C	
1326AB-Axx-21-A4	with standard 90V DC,	3.1 N-m bi	ake	а	dd 57 millir	neters to /	AD, AG and	d C	
BF2 = 10 +0.360/-0	.000 dia.					1	Shaft Ru	nout	0.051 T.I.R.
AJ2 = 115							Shaft En	dplay	0.127 T.I.R.
BB = 3.0							Pilot Ecc	entricity	0.102 T.I.R.
F = 15.0							Maximur	n Face Runout	0.102 T.I.R.
³ +0.5, -0.5	⁴ +0.013, -0.0)09		5	+0.009, -0.	004			

Standard Inch Combination Face/Flange Mount (in inches)

Catalog Number	Description	AD	AG	AH	AK ¹	С	0	U ²	Кеу
1326AB-B1x-11	without brake	10.16	11.78	2.38	4.50	14.16	5.88	1.1250	0.25 x 0.25 x 1.50
1326AB-B2x-11		13.16	14.78	2.38	4.50	17.16	5.88	1.1250	0.25 x 0.25 x 1.50
1326AB-B3x-11		16.41	18.03	2.38	4.50	20.41	5.88	1.1250	0.25 x 0.25 x 1.50
1326AB-B4x-11		19.66	21.28	2.38	4.50	23.66	5.88	1.1250	0.25 x 0.25 x 1.50
1326AB-Bxx-11-K5	with optional 24V DC	C, 120 lbin. b	orake	add 2.25 inches to AD, AG and C					
1326AB-Bxx-11-A5	with standard 90V D	C, 120 lbin. l	brake	add 2.25 inches to AD, AG and C					
BF1 = 0.375 - 16 ta	pped hole, 0.38 deep					(1)	Shaft Run	out	0.002 T.I.R.
BF2 = 0.406 dia.							Shaft End	play	0.005 T.I.R.
AJ1 = 5.875							Pilot Ecce	ntricity	0.004 T.I.R.
AJ2 = 7.0							Maximum	Face Runout	0.004 T.I.R.
BB = 0.093									
F = 0.66									
¹ +0.000, -0.003	² +0.000, -0	0.0005	I	BF1 & AJ1 are	found on Er	nglish units o	only.		

Metric Flange Mount (in millimeters)

Catalog Number	Description	AD	AG	AH ³	AK ⁴	С	0	U ⁵	Кеу
1326AB-B1x-21	without brake	257	298	50	130	348	149	24	8 x 7 x 40
1326AB-B2x-21		333	374	50	130	424	149	24	8 x 7 x 40
1326AB-B3x-21		416	457	50	130	507	149	24	8 x 7 x 40
1326AB-B4x-21		498	540	50	130	589	149	24	8 x 7 x 40
1326AB-Axx-21-K5	with optional 24V DC,	13.6 N-m b	-m brake add 57 millimeters to AD, AG and C						
1326AB-Axx-21-A5	with standard 90V DC,	13.6 N-m	brake	ć	add 57 milli	meters to A	AD, AG and	d C	
BF2 = 12 +0.430/-0	.000 dia.					1	Shaft Ru	nout	0.051 T.I.R.
AJ2 = 165							Shaft En	dplay	0.127 T.I.R.
BB = 4.0							Pilot Ecc	entricity	0.102 T.I.R.
F = 16.0							Maximun	n Face Runout	0.102 T.I.R.
³ +0.5, -0.5	⁴ +0.014, -0.01	1		5	0.009, -0.00)4			

Figure 11 Motor Dimensions – 1326AB-Cxx Series Servomotor

Standard Inch Combination Face/Flange Mount (in inches)

Catalog Number	Description	AD	AG	AH	AK ¹	С	0	U ²	Кеу
1326AB-C1x-11	without brake	10.88	12.44	3.00	4.50	15.44	7.63	1.3750	0.31 x 0.31 x 2.00
1326AB-C2x-11		13.88	15.44	3.00	4.50	18.44	7.63	1.3750	0.31 x 0.31 x 2.00
1326AB-C3x-11		17.38	18.94	3.00	4.50	21.94	7.63	1.3750	0.31 x 0.31 x 2.00
1326AB-C4x-11		20.88	22.44	3.00	4.50	25.44	7.63	1.3750	0.31 x 0.31 x 2.00
1326AB-Cxx-11-K7	with optional 24V DC, 3	860 lbin. b	rake	e add 2.5 inches to AD, AG and C					
1326AB-Cxx-11-A7	with standard 90V DC,	360 lbin. k	orake	add 2.5 inches to AD, AG and C					
BF1 = 0.375 - 16 ta	oped hole, 0.69 deep					1	Shaft Rund	out	0.002 T.I.R.
BF2 = 0.406 dia.							Shaft End	olay	0.005 T.I.R.
AJ1 = 5.875							Pilot Eccer	ntricity	0.004 T.I.R.
AJ2 = 9.0							Maximum	Face Runout	0.004 T.I.R.
BB = 0.187									
F = 0.88									
1 +0.000, -0.003	² +0.000, -0.00	05		BF1 & AJ1 are	found on Er	glish units	only.		

Metric Flange Mount (in millimeters)

Catalog Number	Description	AD	AG	AH ³	AK ⁴	С	0	U ⁵	Кеу		
1326AB-C1x-21	without brake	277	317	60	180	377	194	32	10 x 8 x 50		
1326AB-C2x-21		353	393	60	180	453	194	32	10 x 8 x 50		
1326AB-C3x-21		442	482	60	180	543	194	32	10 x 8 x 50		
1326AB-C4x-21		531	571	60	180	631	194	32	10 x 8 x 50		
1326AB-Cxx-21-K7	with optional 24V DC,	ional 24V DC, 40.7 N-m brake				add 64 millimeters to AD, AG and C					
1326AB-Cxx-21-A7	with standard 90V DC,	40.7 N-m	brake		add 64 milli	meters to	AD, AG and	d C			
BF2 = 15 +0.430/-0	.000 dia.					1	Shaft Ru	nout	0.051 T.I.R.		
AJ2 = 215							Shaft En	dplay	0.127 T.I.R.		
BB = 4.0							Pilot Ecc	entricity	0.102 T.I.R.		
F = 23.0							Maximun	n Face Runout	0.102 T.I.R.		
³ +0.5, -0.5	⁴ +0.014, -0.01	11		5	+0.018, +0.00	02					

Dimensions are in inches and (millimeters)

Cable	Description	CH ¹	BR ²	Connector Max. Dia.	Cable Max. Dia.
1326-CFUxxx	Commutation Feedback	4.0 (101.6)	2.0 (50.8)	1.25 (31.75)	0.43 (10.92)
1326ES-CFUxxx ⁴	Commutation Feedback (Extended Length)	4.0 (101.6)	2.0 (50.8)	1.25 (31.75)	0.43 (10.92)
1326-CFUTxxx	Commutation Feedback (High Flex)	4.0 (101.6)	6.8 (172.7)	1.25 (31.75)	0.68 (17.27)
1326ES-CFUTxxx ⁴	Commutation Feedback (Extended Length, High Flex)	4.0 (101.6)	6.8 (172.7)	1.25 (31.75)	0.68 (17.27)
1326-СРАВххх	Motor Power – Series A4, A5	5.0 (127.0)	3.0 (76.2)	1.25 (31.75)	0.55 (13.84)
1326ES-CPABxxx ⁴	Motor Power – Series A4, A5 (Extended Length)	5.0 (127.0)	3.0 (76.2)	1.25 (31.75)	0.55 (13.84)
1326-СРАВТххх	Motor Power – Series A4, A5 (High Flex)	5.0 (127.0)	11.0 (279.4)	1.25 (31.75)	0.73 (18.54)
1326ES-CPABTxxx ⁴	Motor Power – Series A4, A5 (Extended Length, High Flex)	5.0 (127.0)	11.0 (279.4)	1.25 (31.75)	0.73 (18.54)
1326-СРСххх	Motor Power – Series A7	5.0 (127.0)	3.0 (76.2)	1.25 (31.75)	0.73 (18.54)
1326ES-CPCxxx	Motor Power – Series A7 (Extended Length)	5.0 (127.0)	3.0 (76.2)	1.25 (31.75)	0.73 (18.54)
1326-СРСТххх	Motor Power – Series A7 (High Flex)	5.0 (127.0)	13.1 (332.7)	1.50 (38.10)	0.87 (22.02)
1326ES-CPCTxxx	Motor Power – Series A7 (Extended Length, High Flex)	5.0 (127.0)	13.1 (332.7)	1.50 (38.10)	0.87 (22.02)
1326-CEUxxx	Encoder Feedback	4.0 (101.6)	2.0 (50.8)	1.25 (31.75)	0.51 (12.95)
1326-CVUxxx	Master/Vernier	4.0 (101.6)	2.0 (50.8)	1.25 (31.75)	0.53 (13.46)

¹ CH is described as the clearance to bend.

² BR (Bend Radius) is specified for standard 1326 cable assemblies. BR may vary on user fabricated cables. For standard cable, BR is a one time flex application. Flex cables have a much higher BR to withstand flex applications.

³ All cables should be hung or laid flat for 24 hours prior to installation. This will allow the conductors to "relax" into their natural state and guard against internal twisting.

⁴ 1326 commutation and power cables, standard and flex, are available in extended lengths of 150, 200, 250 and 300 feet (45.7, 61.0, 76.2, 91.4 meters) when using a 1391B-ES or 1391-DES drive.

Servomotor Options

This section provides detailed information on the various options available for the 1326 AC Servomotor.

Integral Holding Brake (Option -Ax or -Kx)

The 1326AB servomotor contains an integral holding brake when the catalog number contains a suffix of "-Ax" (90V DC input) or "-Kx" (24V DC input). The brake is a disc type that is spring-set upon removal of power. The brake is designed to hold a load at rest and provide limited braking torque for emergency stopping. The brake is not intended as a positioning brake (brake backlash is 0.8 arc-minutes maximum) or to be continuously cycled to assist in stopping a load. When used as a parking brake, the brake must not be energized/de-energized more than 90 times an hour. A parking brake is only meant to hold a stationary load and is not intended to stop motor movement, unless a power interruption occurs.

For further information, refer to Table B and the *Bulletin 1391 Instruction Manual*.

Table B Holding Brake Data

Motor Catalog Number	Holding Torque Ibin. (N-m)	Current D when Ene -Ax (90V)	raw rgized <i>-Kx (24V)</i>	Brake Response Time Pickup/Dropout	Weight Adder to Motor Weight Ibs. (kg)	Inertia Adder to Mo- tor Inertia <i>Ibins² (kg-cm-s²)</i>	Cold Resist -Ax (90V)	ance - <i>Kx (24V)</i>
1326AB-A-11, 21	72 (8.1)	0.26A	0.88A	120ms/20ms	3.0 (1.36)	0.001 (0.001)	382 ohms	28 ohms
1326AB-B-11, 21	120 (13.6)	0.37A	1.20A	150ms/25ms	9.0 (4.08)	0.0027 (0.0031)	270 ohms	21 ohms
1326AB-C-11, 21	400 (45.1)	0.32A	1.20A	120ms/30ms	13.0 (5.90)	0.0046 (0.0053)	306 ohms	21 ohms

Brake Power Supply for 90V DC Brakes (1326-MOD-BPS)

The Brake Power Supply converts 120V AC to the voltage needed for 90V DC brakes.

Up to four brakes can be connected to one power supply. However, if independent control of multiple motors is desired, one power supply per motor must be used.

Refer to Figure 13 for dimension and wiring information.

Important: 24V DC brakes require a user supplied power supply capable of producing 24V DC at 0.88A to 1.2A.

SpecificationsPower Supply Input Rating:120VDissipation:5 wat

120V AC, single-phase, +10%, -15% 5 watts per motor

Figure 13 Brake Power Supply Dimensions and Wiring

Encoder Mounting Adapters (1326AB-MOD-Mxx)

Several adapters are available for mounting Allen-Bradley 845 H or T encoders to 1326AB Servomotors. Refer to the figure below for further information.

Important: The IP 65 rating of the motor is not maintained when using this option.

Figure 14 Encoder Mounting Adapter

Shaft Oil Seal (1326AB-MOD-SSV-xx)

A Viton shaft oil seal is available for field installation on the motor shaft. The seal is to be used in applications where the motor shaft may be subjected to occasional oil splashes (motor is mounted to gearbox, etc.). The kit is not intended to be used in applications where the motor shaft is partially or fully submerged in oil.

Resolver Feedback Package (1326AB-MOD-Vxxxx)

Figure 15 shows the dimensions of the 1326AB Resolver Feedback Package.

Important: The IP 65 rating of the motor is not maintained when using this option.

Figure 15

Resolver Feedback Package Dimensions

¹5.2 (0.206) dia. hole, 3 places equally spaced on a 101.6 (4.00) dia. Bolt Circle.

²+0.000/-0.0127 (+0.0000/-0.0005) tolerance.

³+0.000/-0.0762 (+0.0000/-0.003) tolerance.

⁴All mounting hardware provided in Resolver Feedback Mounting Kit.

⁵Cannon female connector CA3102R20–29P or equivalent mounted on the package. Cannon male mating connector CA3106F–20–295–A95 or equivalent.

⁶Refer to the 1326AB Resolver Feedback Package Product Data for additional information.

Resolver Feedback Mounting Adapter Kit (1326AB-MOD-Mx)

The Resolver Feedback Mounting Kit provides a means of mounting the 1326AB Resolver to B and C series motors. An adapter is not needed for A series motors. Refer to Figure 16 for dimension information.

Important: The IP 65 rating of the motor is not maintained when using this option.

Figure 16

1326AB Resolver Mounting Kit Dimensions

Motor Junction Box Kit (1326AB-MOD-RJxx)

The Motor Junction Box Kit provides axially mounted connectors. The connector version allows the motor connectors to be brought out axially to the motor without further wiring.

The IP65 rating of the motor is maintained when using this junction box.

Dimensions for the junction box are shown in the following figure.

Figure 17 Motor Junction Box Dimensions

Blower Kits (1326AB-MOD-G3, G4)

Two blower kits are available for use with 1326AB "C" Series AC Servomotors. The "G3" kit is designed for the "C2E" and "C4B" servomotors. The continuous current rating of all other "C" frame motors is too high to gain the benefit of the blower kit. The "G3" will not work on motors with a rear mounted encoder. The "G4" kit is designed for the "C4B" motor only. Each kit consists of an impedance protected fan (UL recognized, CSA approved), housing, grill guard and necessary hardware.

Important: The IP 65 rating of the motor is not maintained when using this option.

Specifications	
Input Voltage	220/240V AC, 50/60 Hz., single-phase
Line Amperes	0.15 / 0.14
Locked Rotor Amperes	0.23 / 0.23
Fan Output	240 CFM
Air Inlet Clearance	6 inches (152.4 mm)
Weight	4 lbs. (1.81 kg)

The following table illustrates the operational improvements realized when the blower kit is installed on the motors shown. Refer to Figure 18 for dimensions.

Table C

Performance Improvements with the Blower Kit

	Motor without	Blower	Motor with Blower			
Motor Catalog Number	RMS Cont. Torque ¹ Ibin. (N-m)	Continuous Amperes A	RMS Cont. Torque ¹ Ibin. (N-m)	Continuous Amperes ² A		
1326AB-C2E ³	210 (23.7)	33.2	285 (32.2)	45.0		
1326AB-C4B ⁴	420 (47.5)	38.2	505 (57.1)	45.0		

¹ at 40° C ambient.

² Amplifier available current may limit actual torque improvement. Continuous output cannot exceed 45A.

³ Works with G3 option only.

⁴ Works with G3 and G4 option.

Figure 18 Blower Kit Dimensions

Cable Wiring Information

Pin-outs and interconnect information for the various 1326 cables are provided in this section.

1326-CFUxx, 1326ES-CFUxx ¹, 1326-CFUTxx, 1326ES-CFUTxx ¹ Commutation Cable

		Connector	1391
Wire Color	Gauge	Pin	Terminal #
Black	#20	А	TB1-10
White	#20	В	TB1-9
Shield - Drain	#20	N/C	TB1-8
Black	#20	D	TB1-7
Red	#20	E	TB1-6
Shield - Drain	#20	N/C	TB1-5
Black	#20	Н	TB1-4
Green	#20	G	TB1-3
Shield - Drain	#20	N/C	TB1-2
Braided Shield	#36	N/C	TB1-1 to
			Ground Stud

1326-CPABxx, 1326ES-CPABxx ¹, 1326-CPABTxx, 1326ES-CPABTxx ¹ Motor Power Cable

Wire	Wire		Connector	1391
Number	Color	Gauge	Pin	Terminal #
1	Black	12	F	TB5-1
2	Black	12	I	TB5-2
3	Black	12	В	TB5-3
4	Black	16	D	Brake Power (+)
5	Black	16	E	Thermal Switch
6	Black	16	С	Brake Power (-)
7	Shield/Drain	16	G	Stud Ground
8	Black	16	Н	Stud Ground
9	Black	16	Α	Thermal Switch

1326-CPCxx, 1326ES-CPCxx 1 , 1326-CPCTxx, 1326ES-CPCTxx 1 Motor Power Cable

Wire	Wire		Connector	1391
Number	Color	Gauge	Pin	Terminal #
1	Black	8	D	TB5-1
2	Black	8	E	TB5-2
3	Black	8	F	TB5-3
4	Shield/Drain	12	А	Stud Ground
5	Black	12	В	Stud Ground
6	Black	16	G	Thermal Switch
7	Black	16	Н	Brake Power (+)
8	Black	16	I	Brake Power (-)
9	Black	16	С	Thermal Switch

¹ 1326ES, extended length cables need to interface with 1391 B-ES or 1391-DES drives.

1326-CVUxx Master/Vernier Resolver Cable

Master/		Wire		Connector	
Vernier	Pair	Color	Gauge	Pin	Description
Master	1	White	22	А	Rotor 1
		Black	22	В	Rotor 2
	2	Red	22	D	Stator 1
		Black	22	F	Stator 3
	3	Orange	22	E	Stator 2
		Black	22	G	Stator 4
Vernier	4	Blue	22	J	Rotor 1
		Black	22	К	Rotor 2
	5	Green	22	Ν	Stator 2
		Black	22	R	Stator 4
	6	Violet	22	Μ	Stator 1
		Black	22	Р	Stator 3

Pairs 1, 2 and 3 are used with single device format resolvers (i.e. 1:1, 1:2, 1:2.5 and 1:5).

1326-CEUxx Encoder Feedback Cable

Pair	Wire Color	Gauge	Connector Pin
1	Black	22	Н
	White	22	А
2	Black	22	F
	Red	22	D
3	Black	22	J
	Orange	22	С
4	Black	22	I
	Blue	22	В
5	Black	22	F
	Green	22	E

Servomotor Application Guide

The following steps are a general guide designed to assist in servomotor selection. Formulas provided on the following pages should be used in conjunction with the steps below to determine correct motor sizing. For further assistance, complete the appropriate Application Data Sheet (pages 38-43) and contact your local Allen-Bradley Sales Office.

- Determine the motor speed requirements. Based on the power train configuration of your application (leadscrew, rack and pinion, conveyor) determine the average and peak rpm of the servomotor. Choose the velocity profile that provides the closest approximation of your cycle.
 - a) Triangular Velocity Profile.

b) Trapezoidal Velocity Profile.

- 2. Determine the minimum continuous motor torque required. Calculate motor torque (Tm) using the formulas on page 32, 34 or 36.
- 3. Determine the peak motor torque required to accelerate the load. If the motor must accelerate within a specified time, determine the system inertia using the formula sheets for your specific power train configuration, otherwise go to step 5. Use the time (Time) to achieve peak rpm, change in rpm (Δ rpm), power train inertia (System Inertia) and load torque (Tl) in one of the two formulas that follow:

System Inertia in lb.-ft.²

Peak Torque =
$$\frac{\text{System Inertia x } \Delta \text{rpm}}{308 \text{ x Time (to accelerate)}} + \text{TI}$$

where:

Peak Torque = total motor torque required to accelerate the load in lb.-ft. System Inertia = total system inertia (including motor) in lb.-ft.² Time = acceleration time (in seconds) TI = load torque present at the motor shaft during accel in lb.-ft. Δ rpm = change in motor velocity during acceleration time.

System Inertia in lb.-in.-s²

Peak Torque =
$$\frac{\text{System Inertia x } \Delta \text{rpm}}{9.6 \text{ x Time (to accelerate)}} + TI$$

where:

Peak Torque = total motor torque required to accelerate the load in lb.-in. System Inertia = total system inertia in lb.-in.-s² (listed as Jtjm on formula sheets) Time = acceleration time (in seconds) TI = load torque present at the motor shaft during accel in lb.-in.

 Δ rpm = change in motor velocity during acceleration time.

4. If the motors total time to accelerate/decelerate $(t_1 + t_3)$ exceeds 20% of the total cycle time $(t_1+t_2+t_3+t_4)$, determine the motors average torque with the formula shown.

Duty Cycle Profile

- Tpa Motor peak torque to accelerate to maximum speed. (Expressed in lb.-in. or lb.-ft. The same units must be used throughout the formula.)
- Tss Motor torque present at the motor shaft during constant speed segment. (Expressed in lb.-in. or lb.-ft. The same units must be used throughout the formula.)
- Tpd Motor peak torque to decelerate to zero speed. (Expressed in lb.-in. or lb.-ft. The same units must be used throughout the formula.)
- Tr Torque when motor is at zero speed (typically is Tss).
- t_1 , t_2 , t_3 , t_4 Time for each portion of the duty cycle in seconds.
- 5. To select a servomotor:
 - a) Select a motor with maximum speed capability of at least the peak rpm calculated in step 1.
 - b) Select a motor with continuous torque capability equal to or greater than the value determined in step 2 or 4, whichever is greater.
 - c) Select a motor with the capability to supply peak torque as determined in step 3, up to the maximum speed determined in step 1.

Servomotor Driven Leadscrew Formulas

Accelerating Torque

See step 3 of the Servomotor Application Guide on page 30.

Where:

- $e = Efficiency of leadscrew, e_1 (90\% typical) or gearbox, e_2 (95\% typical).$
- G.R. = Ratio of motor speed to leadscrew speed.
- Jb = Leadscrew inertia (lb.-in.- s^2).
- $\label{eq:constraint} \begin{array}{ll} \mbox{Jgb} &= \mbox{Gearbox inertia at the motor shaft} \\ (\mbox{Ib.-in.-s}^2). \end{array}$
- Jm = Motor inertia (lb.-in.- s^2).
- Jtjm = Total system inertia at the motor shaft (lb.-in.-s²).
- Lead = Movement of slide in inches per revolution of leadscrew.
- Nm = Motor velocity (rpm).

- Tb = Torque at leadscrew (lb.-in.).
- Thrust = Cutting force applied by slide/load on a workpiece (lbs).
- TI = Load torque present at the motor shaft during accel (lb.-in.).
- Tm = Load torque required at the motor (lb.-in.).
- u = Table/slide sliding coefficient of friction (typically 0.03 to 0.2).
- V1 = Linear velocity of slide/load (IPM).
- W1 = Weight of slide and load (lbs.).
- θ = Angle of leadscrew position referenced from the horizontal axis (0°).

Notes:

- (1) Friction torque generated by the weight of the table/slide and part/tool.
- (2) Torque required for thrust (cutting force) load.
- (3) Friction torque generated by the thrust (cutting force) load (approximation).
- (4) Safety factor to account for torque required to overcome seals, gib adjustments, etc. (10% of Tm, min.).
- (5) This term is for a non-counterbalanced, non-horizontal axis.
- (6) System inertia should not exceed 5 times the motor inertia.

Typical Leadscrew Data

(Using Formulas from Previous Page)

Torque at Lead to Produce 1000 lbs. Thrust Force

1. Divide the lb.-in. value shown by efficiency of screw to obtain corrected value.

Lead (in./rev)	Torque (lbin.)	Lead (in./rev)	Torque (lbin.)
0.200	31.84	0.333	53.02
0.250	39.80	0.500	79.61
0.300	47.77	1.000	159.23

2. For thrust other than 1000 lbs.

Torque = $\frac{\text{Required Thrust}}{1000}$ x Torque at 1000 lbs.

Inertia of the Leadscrew

1. To determine total leadscrew inertia.

Leadscrew Inertia =	Total Leadscrew Length (i 10	<u>in.)</u> x Inertia (pe	er 10″ length)
Diameter (inches) (lbins	Inertia (10" length) ²)	Diameter (inches) (lbin	Inertia (10" length) ns ²)
0.50	0.000048	2.00	0.0115
0.75	0.00023	2.25	0.0184
1.00	0.00072	2.50	0.0281
1.25	0.0018	2.75	0.0412
1.50	0.0038	3.00	0.0583
1.75	0.0068	3.50	0.1080

2. Formula to determine leadscrew inertia.

Jb = 0.000073⁽¹⁾ x D⁴ x L

where:

⁽¹⁾ Leadscrew is assumed to be made of steel. If it is made of aluminum, the 0.000073 constant becomes 0.000024.

D = Screw diameter in inches. L = Screw length in inches.

Inertia of the Slide/Table Reflected to the Motor per 1000 lbs. Weight

1. For slide/table weight other than 1000 lbs.

Slide/Ta	ble Inertia at Leadscrew = Actual 10	Weight x	Reflected Inertia (1000 lbs.)
Lead (in./rev)	Reflected Inertia (per 1000 lbs.) (<i>lbins²</i>)	Lead (in./rev)	Reflected Inertia (per 1000 lbs.) (lbins ²)
0.200	0.0026	0.333	0.0074
0.250	0.0042	0.500	0.0167
0.300	0.0060	1.000	0.0666

Servomotor Driven Rack and Pinion Formulas

- e = Efficiency of pinion to rack mesh (95%) e₁ or gearbox (95%/mesh) e₂.
- G.R. = Ratio of motor speed to pinion speed.
- Jgb = Gearbox inertia at the motor shaft (lb.-in.-s²).
- Jm = Motor inertia (lb.-in.-s²).
- Jpin = Pinion inertia (lb.-in.- s^2).
- Jtjm = Total system inertia at the motor shaft (lb.-in.-s²).
- Nm = Motor velocity (rpm).
- R = Pinion radius (in.).

- Thrust = Force applied by table against workpiece, stop, etc. (lbs).
- TI = Load torque present at the motor shaft during accel (lb.-in.).
- Tm = Continuous torque required at the motor (lb.-in.).
- Tpin = Continuous torque required at the pinion (lb.-in.).
- Sliding coefficient of friction of table or shuttle support bearings (typically 0.03 to 0.2).
- V1 = Linear velocity of slide/load (IPM).
- W1 = Weight of table/shuttle and load (lbs.).

- (1) Friction torque required to move table/load.
- (2) Motor torque required for thrust load.
- (3) Friction torque generated by the thrust load.
- (4) Safety factor to account for torque required to overcome misalignment, mechanical adjustments, etc. (10% of Tm minimum).
- (5) Gearbox/reducer typically required between motor and pinion.
- (6) System inertia should not exceed 5 times the motor inertia.

Typical Rack & Pinion System Data (Using Rack and Pinion Formulas from Previous Page)

Torque at Pinion to Produce 1000 lbs. Thrust Force

- 1. Divide lb.-in. value shown at pinion by gearbox ratio and efficiency to obtain required motor torque (Tm)
- 2. To determine pinion torque for other thrust values, divide the thrust by 1000 and multiply by the pinion torque shown for the proper radius.

Pinion Radius ¹	Pinion Torque	Pinion Radius ¹	Pinion Torque
(inches)	(lbin.)	(inches)	(lbin.)
0.5	526.3	2.0	2105.3
1.0	1052.6	3.0	3157.9
1.5	1578.9	4.0	4210.5
	¹ Pinion efficiency	of 95% assumed.	

Torque at Pinion to Move 1000 lbs. Total Table/Slide Weight

- 1. Divide the lb.-in. value shown at pinion by gearbox ratio and efficiency to obtain required motor torque (Tm)
- 2. To determine pinion torque for other weight values, divide the weight by 1000 and multiply by the pinion torque shown for the proper radius.

Pinion Radius ¹		Pi	nion Torq (Ibin.)	ue ²	
(inches)	u=0.03	u=0.05	u=0.1	u=0.15	u=0.2
0.5	15.8	26.3	52.6	78.9	105.3
1.0	31.6	52.6	105.2	157.9	210.5
1.5	47.4	78.9	157.8	236.7	315.9
2.0	63.2	105.2	210.4	315.6	421.2
3.0	94.7	157.9	315.6	473.4	631.8
4.0	126.3	210.4	420.8	631.2	842.4
¹ Pinion efficiency of 95% assumed.				² u = Coefficient	of friction.

Inertia of Table Plus Load Reflected to Pinion per 1000 lbs. Weight

- 1. Divide the inertia value by the square of the gearbox ratio to obtain system inertia at the motor.
- 2. To determine reflected inertia for other weights, divide the weight by 1000 and multiply by the inertia shown for the appropriate radius.

Pinion Radius (inches)	Reflected Load Inertia (lbins ²)	Pinion Radius (inches)	Reflected Load Inertia (<i>lbins</i> ²)
0.5	0.648	2.0	10.360
1.0	2.590	3.0	23.300
1.5	5.830	4.0	41.450

3. Formula to determine pinion inertia.

Jpin = 0.000073⁽¹⁾ x D⁴ x WH

where:	⁽¹⁾ Pinion is assumed to be made of steel. If it is made of
D = Pinion diameter in inches.	aluminum, the 0.000073 constant becomes 0.000024.
Jpin = Inertia in lbin-s ²	
$\dot{W}H$ = Pinion width in inches.	

Servomotor Driven Conveyor Formulas

Where:

- e = Efficiency of drive roller to gearbox (95% typical) e₁ and gearbox (95%/mesh typical) e₂.
- G.R. = Ratio of motor speed to pinion speed.
- Jgb = Gearbox inertia at the motor shaft (lb.-in.-s²).
- Jm = Motor inertia (lb.-in.-s²).
- Jpull = Pulley + roller inertia, 1, 2, 3 (lb.-in.-s²).
- Jtjm = Total system inertia at the motor shaft (lb.-in.-s²).
- Nm = Motor velocity (rpm).

- R = Pulley/roller radius (in.).
- TI = Load torque present at the motor shaft during accel (lb.-in.).
- Tm = Continuous torque required at the motor (lb.-in.).
- Tp/r = Continuous torque required at the main drive pulley/roller (lb.-in.).
- u = Rolling coefficient of friction. Typically 0.03 to 0.05 for ball bearing rollers.
- V1 = Linear velocity of load (IPM).
- Wb = Weight of conveyor belt (lbs.).
- W1 = Weight of load and belt (lbs.).

Notes:

- (1) Torque required to move the load at pulley/roller 1 (lb.-in.).
- (2) Torque required to move the belt at pulley/roller 1 (lb.-in.).
- (3) Safety factor to account for torque required to overcome miscellaneous tensions, etc.
- (4) Gearbox/reducer typically required between motor and pulley/drive roller.
- (5) System inertia should not exceed 5 times the motor inertia.

Typical Conveyor System Data

(Using Conveyor Formulas from Previous Page)

Torque at Drive Pulley/Roller 1 w/1000 lbs. Load

- 1. Divide lb.-in. value shown at the roller by the gearbox ratio, roller/ belt (e₁) and gearbox (e₂) efficiency to obtain required motor torque (Tm)
- 2. To determine pulley/roller torque for other load values, divide the load weight by 1000 and multiply by the pulley/roller torque shown for the appropriate radius.

Roller		Torc	que at Pulley	y 12	
Radius ¹			(lbin.)		
(inches)	u=0.03	u=0.05	u=0.1	u=0.15	u=0.2
0.5	15.8	26.3	52.6	78.9	105.3
1.0	31.6	52.6	105.2	157.9	210.5
1.5	47.4	78.9	157.8	236.7	315.9
2.0	63.2	105.2	210.4	315.6	421.2
3.0	94.7	157.9	315.6	473.4	631.8
4.0	126.3	210.4	420.8	631.2	842.4

¹ Pinion efficiency of 95% assumed.

² u = Coefficient of friction.

3. Formula used to determine torque at pulley/roller.

Torque = $\frac{R \times W1 \times u}{e}$ where: W1 = 1000 lbs.

Inertia of the Load Reflected to the Drive Pulley/Roller per 1000 lbs. Load *(does not include roller, pulley or belt inertia)*

- 1. Divide the inertia value shown by the square of the gearbox ratio to obtain system inertia at the motor.
- 2. To determine reflected inertia for other weights, divide the weight by 1000 and multiply by the inertia shown for the appropriate radius.

Roller	Reflected Load
Radius	Inertia
(inches)	(lbin.)
0.5	0.648
1.0	2.590
1.5	5.830
2.0	10.360
3.0	23.300
4.0	41.450

3. Formula to determine inertia of each roller or pulley.

 $Jr = 0.0012^{(1)} x [(D_1^4 \div 16) - (D_2^4 \div 16)] x L$

where:

- D_l = Pulley/roller outer diameter in inches. D_2 = Pulley/roller inner diameter in inches. L = Pulley/roller width in inches.
- (1) Pulley/roller is assumed to be made of steel. If it is madeof aluminum, the 0.0012 constant becomes 0.00004.

Leadscrew Application Data for Point to Point Positioning

A.	CUS	STOMER						
B.	AXI	S DESCRIPTION						
C.		NEW SYSTEM						
D.		EXISTING EQUIPMENT						
	1.	SERVOMOTOR MANUFACTURER						
		AC	MODEL NO. / RATED CURRENT /	RATED RPM / KW= / CON	FINUOUS TORC	DUE / PEAK TORQUE /	SHAFT INERTIA	
	2	SERVO AMPLIFIER	MANUFACTURER					
	2.							
-								
E.							11/1/	
	1. ว						H/V	
	2. 2	SLIDE / WAT MATERIAL (STEEL ON ST			0.2)			
	J.	SLIDING COEFFICIENT OF FRICTION (SLIDE / WAY - TYPICAL = 0.03, OTHERWISE RANGE = 0.03 TO 0.2)XX						
	5							
	6.	6 MAXIMUM SPEED						
	7. ACCELERATION / DECELERATION TIME TO MAXIMUM SPEED					SEC.		
	8.	MOTOR / SCREW REDUCER EFFICIEN	CY (TYPICAL = 0.95)				.XX	
	9.	MOTOR / SCREW GEAR RATIO (T	0 1)			MOTOR RPN	// SCREW RPM	
	10.	SCREW TYPE						
	11.	SCREW EFFICIENCY (TYPICAL = 0.90)					.XX	
	12.	SCREW LENGTH					IN.	
	13.	SCREW DIAMETER					IN.	
	14.	SCREW LEAD					IN. / REV	
	15.	APPLIED FORCE OR THRUST					LBS.	
	16.	FOR DIRECT DRIVE SYSTEMS - MOTO	R TO SCREW COUPLING DIAMETER		IN.	LENGTH	IN.	
	17.	FOR PULLEY DRIVE SYSTEM - MOTOF	R MOUNTED GEAR DIAMETER		IN.	LENGTH	IN.	
	18.	FOR PULLEY DRIVE SYSTEM - SCREW	MOUNTED GEAR DIAMETER		IN.	LENGTH	IN.	
	19.	MOTOR MODIFICATIONS (SEAL, SPEC	IAL SHAFT, ETC.)					
	20.	SPECIFY TIME TO ACHIEVE MAXIMUN	I SPEED				SECONDS	
	21.	RAPID TRAVERSE SPEED					IN. / MIN	
	22.	SYSTEM INERTIA REFLECTED TO MO	TOR SHAFT				LBINS ²	
F.	POS	SITION FEEDBACK					—	
	1.	TYPE OF FEEDBACK DEVICE	RESOLVER	L ENCODER				
	2.	FEEDBACK DEVICE MOUNTING	MOTOR	SCREW				
	3.	RESOLUTION AT FEEDBACK DEVICE						

Leadscrew Application Data for Point to Point Positioning (Continued)

G. DUTY CYCLE & TOTAL CYCLE TIME (TRIANGULAR OR TRAPEZOIDAL)

Leadscrew Application Data for Machine Tool Positioning

A.	CUS	STOMER						
B.	AXI	S DESCRIPTION						
C.		NEW SYSTEM						
D.		EXISTING EQUIPMENT						
	1.	SERVOMOTOR	MANUFACTURER					
			MODEL NO. / RATED CURRENT	RATED RPM / KW= / CON	INUOUS TORC	UF / PFAK TOROUF	SHAFT INFRTIA	
	2	SERVO AMPLIEIER						
	2.							
-								
E.	MAG							
	1. 2						H/V	
	2. 2	SLIDE / WAY MATERIAL (STEEL ON ST			0.0)		VV	
	3. 4	SLIDING COEFFICIENT OF FRICTION (SLIDE / WAY – TYPICAL = 0.03, OTHERWISE RANGE = 0.03 TO 0.2)XX						
	4. E						LBO.	
	э. 4						LBS.	
	0. 7							
	7. g						JLU. 	
	0. Q	MOTOR / SCREW REDUCER EI HOLF	TO 1)					
	7. 10	SCREW TYPE						
	10.	SCREW FFFICIENCY (TYPICAL = 0.90))				XX	
	12	SCREW ENGLIGET SCREW ENGLIGET						
	13.	SCREW DIAMETER					IN.	
	14.	SCREW LEAD					IN. / REV	
	15.	APPLIED FORCE OR THRUST					LBS.	
	16.	FOR DIRECT DRIVE SYSTEMS - MOTO	OR TO SCREW COUPLING DIAMETE	R	IN.	LENGTH	IN.	
	17.	FOR PULLEY DRIVE SYSTEM - MOTO	OR PULLEY DRIVE SYSTEM - MOTOR MOUNTED GEAR DIAMETER				IN.	
	18.	FOR PULLEY DRIVE SYSTEM - SCREV	W MOUNTED GEAR DIAMETER		IN.	LENGTH	IN.	
	19.	MOTOR MODIFICATIONS (SEAL, SPECIAL SHAFT, ETC.)						
	20.	SYSTEM POSITION LOOP GAIN AT CL	ITTING SPEED				IN. / MIN / MIL	
	21.	IF GAIN NOT SPECIFIED, SPECIFY TIM	ME TO ACHIEVE CUTTING SPEED				SECONDS	
	22.	SYSTEM POSITION LOOP GAIN ABOV	'E CUTTING SPEED (0.5 X #6 TYPICA	AL)			IN. / MIN / MIL	
	23.	RAPID TRAVERSE SPEED					IN. / MIN	
	24.	SYSTEM INERTIA REFLECTED TO MO	TOR SHAFT				LBINS ²	
F.	POS	SITION FEEDBACK						
	1.	TYPE OF FEEDBACK DEVICE	RESOLVER	ENCODER				
	2.	FEEDBACK DEVICE MOUNTING	MOTOR	SCREW				
	3.	RESOLUTION AT FEEDBACK DEVICE						

Leadscrew Application Data for Machine Tool Positioning (Continued)

G. DUTY CYCLE & TOTAL CYCLE TIME (TRIANGULAR OR TRAPEZOIDAL)

Rack and Pinion Application Data for Point to Point Positioning

Α.	CUS	STOMER						
В.	AXIS	S DESCRIPTION						
C.		NEW SYSTEM						
D.	E	EXISTING EQUIPMENT						
	1.	SERVOMOTOR	MANUFAC	TURER				
		AC	MODEL NO	D. / RATED CURRENT	/ RATED RPM / KW= / CON	INUOUS TORC	DUE / PEAK TORQUE / S	SHAFT INERTIA
		DC						
			WINDING N	NO.				
	2.	SERVO AMPLIFIER	MANUFAC	TURER				
		PWM	MODEL NO)				
		SCR	OUTPUT V	OLTAGE				
E.	MAC	CHINE DATA						
	1.	AXIS (HORIZONTAL / VERTICAL)						H/V
	2.	TABLE / SLIDE SUPPORT TYPE (ROLL	ERS, ROLLER	BEARINGS, ETC.)				
	3.	SLIDING COEFFICIENT OF FRICTION	(SLIDE / WAY -	- TYPICAL = 0.03, OTH	IERWISE RANGE = 0.03 TC	0.2)		.XX.
	4.	TOTAL WEIGHT OF TABLE / LOAD						LBS.
	5.	MAXIMUM TABLE SPEED						IN. / MIN
	6.	ACCELERATION / DECELERATION TIM	/IE TO MAXIMU	JM SPEED				SEC.
	7.	RAPID TRAVERSE SPEED						IN. / MIN
	8.	MOTOR PINION REDUCER EFFICIENC	CY (TYPICAL =	0.95)				.XX.
	9.	MOTOR TO GEARBOX SPEED RATIO	(TO 1)				MOTOR RPM /	REDUCER RPM
	10.	APPLIED FORCE (THRUST)						LBS.
	11.	PINION RADIUS						IN.
	12.							IN.
	13.	PINION TO RACK EFFICIENCY (TYPIC	AL = 0.95)			INI		.XX
	14. 15	MUTUR TU GEARBUX COUPLING DIA				IN.		IN.
	15.	OTHER GEAR / PULLEY DIAMETERS				IN.	LENGIH	IN.
	16.	PINION MOUNTED SHEAVE / GEAR D	IAMETER			IN.	LENGTH	IN.
	17.	MOTOR MODIFICATIONS (SEAL, SPE	CIAL SHAFT, E	TC.)				
	18.	SYSTEM INERTIA REFLECTED TO MC	TOR SHAFT					LBINS ²
F.	POS	SITION FEEDBACK						
	1.	TYPE OF FEEDBACK DEVICE		RESOLVER	ENCODER			
	2.	FEEDBACK DEVICE MOUNTING		MOTOR	OTHER			
	3.	RESOLUTION AT FEEDBACK DEVICE						
G.	DUT	Y CYCLE & TOTAL CYCLE TIME						
H.	ENV		t _{rest} E, HIGH TEMP	erature, etc.)	t ₁ t ₂	t ₃ t _{rest}	Ī	

Conveyor Application Data

B. AX							
	IS DESCRIPTION						
C. 🗖	NEW SYSTEM						
D. 🗖	EXISTING EQUIPMENT						
1.	SERVOMOTOR	MANUFACTURER					
	AC	MODEL NO. / RATED CURRENT	/ RATED RPM / KW= / CONTINU	OUS TORQUE / P	PEAK TORQUE / SH	IAFT INERTIA	
		WINDING NO.					
2.	SERVO AMPLIFIER	MANUFACTURER					
	D PWM	MODEL NO.					
		OUTPUT VOLTAGE					
F. MA	CHINF DATA						
1.	CONVEYOR LOAD SUPPORT TYPE (I	BEARING SUPPORTED, ROLLERS, E	TC.)				
2.	SLIDING COEFFICIENT OF FRICTION	OF SUPPORT (TYPICAL = 0.03)				.XX	
3.	TOTAL WEIGHT OF LOAD / BELT	· · · ·				LBS.	
4.	MAXIMUM SPEED					IN. / MIN	
5.	ACCELERATION TIME TO MAXIMUM	SPEED				SECONDS	
6.	MOTOR TO DRIVE ROLL REDUCER E	JCER EFFICIENCY (TYPICAL = 0.95) .XX					
7.	GEARBOX RATIO (TO 1)				MOTOR RPM / GE	EARBOX RPM	
8.	NUMBER OF SUPPORT ROLLS						
9.	COUPLING BETWEEN ROLLS (CHAII	N, BELT, ETC.)					
10.	ROLL O.D.					IN.	
11.	ROLL I.D.					IN.	
12.	ROLL LENGTH					IN.	
13.	ROLL MATERIAL				STEEL	/ Aluminum	
14.	MOTOR TO GEARBOX COUPLING DI	AMETER		IN.	LENGTH	IN.	
15.	OTHER GEAR / PULLEY DIAMETERS			IN.	LENGTH	IN.	
16.	MOTOR MODIFICATIONS (SEAL, SPE	CIAL SHAFT, ETC.)					
17.	SYSTEM INERTIA REFLECTED TO M	OTOR SHAFT				LBINS ²	
F. PO	SITION FEEDBACK						
1.	TYPE OF FEEDBACK DEVICE	RESOLVER	L ENCODER				
2.	FEEDBACK DEVICE MOUNTING		OTHER				
3.	RESOLUTION AT FEEDBACK DEVICE						
0 01	TY CYCLE & TOTAL CYCLE TIME						

Conversion Factors

Abbreviations used in this publication are in ().

Torque

To Convert	То	Multiply By
lbin.	Newton-meters (N-m)	0.113
lbft.	Newton-meters (N-m)	1.3558
Newton-meters (N-m)	lbin.	8.85
Newton-meters (N-m)	lbft.	0.7376
lbin.	kg-cm	1.155
lbin.	lbft.	0.0833
lbft.	lbin.	12
ozin.	lbin.	0.0625
Joules (J)	lbin.	8.85

Temperature

To Convert	То	Use the Formula
degrees F (°F)	degrees C (°C)	(degrees F – 32) / 1.8
degrees C (°C)	degrees F (°F)	(degrees C x 1.8) + 32

Rotation / Rate

To Convert	То	Multiply By
rpm	degrees / second (d / s)	6.00
rpm	radians / second (rad / s)	0.1047
degrees / second (d / s)	rpm	0.1667
radians / second (rad / s)	rpm	9.549
feet / minute (fpm)	meters / second (m / s)	0.00508
feet / second (fps)	meters / second (m / s)	0.3048
inches / second (in. / s)	meters / second (m / s)	0.0254
kmph	meters / second (m / s)	0.2778
rpm	radians / second (rad / s)	0.1047
revolutions	radians (rad)	6.283
radians (rad)	degrees	57.3
degrees	seconds (s)	3600
degrees	minutes (min)	60

Moment Of Inertia

To Convert	То	Multiply By
N-m ²	lbft. ²	2.42
ozin. ²	lbft. ²	0.000434
lbin. ²	lbft. ²	0.00694
lbin. ²	lbins ²	0.00259
lbft. ²	lbins ²	0.373
Slug-in. ²	lbins ²	0.0847
Slug-ft ²	lbft. ²	32.17
ozins ²	lbft. ²	0.1675
ozins ²	kg-cm ²	73.53
lbins ²	lbft. ²	2.68
lbins ²	kg-cm-s ²	1.155
lbins ²	kg-m ²	0.113
kg-m ²	kg-cm-s ²	10.20
kg-m ²	lbft. ²	23.73
kg-m ²	lbins ²	8.85
kg-cm ²	lbins ²	0.000885

Mass / Weight

To Convert	То	Multiply By
ounces (oz.)	grams	31.1
pounds (lbs.)	kilograms (kg)	0.4536
pounds (lbs.)	ounces (oz.)	16
kilograms (kg)	pounds (lbs.)	2.205
Newtons	pounds (lbs.)	0.2248
Slugs	Pounds (lbs.)	32.7

Length

To Convert	То	Multiply By
meters (m)	inches (in.)	39.37
meters (m)	feet (ft.)	3.281
meters (m)	yards (yd)	1.094
meters (m)	millimeters (mm)	1000
meters (m)	centimeters (cm)	100
millimeters (mm)	inches (in.)	0.0394
millimeters (mm)	centimeters (cm)	0.10
micrometers (µm)	inches (in.)	0.00003937
inches (in.)	meters (m)	0.0254
inches (in.)	millimeters (mm)	25.4
inches (in.)	centimeters (cm)	2.54
feet (ft.)	meters (m)	0.3048
yards (yd)	meters (m)	0.914

Power

To Convert	То	Multiply By
watts (W)	horsepower (hp)	0.00134
lbft. / min	horsepower (hp)	0.0000303
horsepower (hp)	watts (W)	746

Acceleration

To Convert	То	Multiply By
in. / s ²	m / s ²	0.0254
in. / s ²	g	386.4
ft / s ²	m / s ²	0.3048
ft / s ²	in. / s ²	12
ft / s ²	g	32.2
rad / s ²	Degrees / s ²	57.3
	209.00010	0710

<u>Area</u>

To Convert	То	Multiply By
in. ²	ft ²	0.00694
ft ²	m ²	0.0929
in. ²	m ²	0.000645
in. ³	ft ³	0000579

Product Data 1326AB AC Servomotor

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation.

Argentina • Australia • Austral • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal Puerto Rico • Qatar • Romania • Russia–CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444