# XM-122 gSE Vibration Module











**User Guide** Firmware Revision 5

1440-VSE02-01RA

# **Important User Information**

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at <a href="http://literature.rockwellautomation.com">http://literature.rockwellautomation.com</a>) describes some important differences between solid state equipment and hardwired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

| WARNING      | Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.                             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPORTANT    | Identifies information that is critical for successful application and understanding of the product.                                                                                                                       |
| ATTENTION    | Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence |
| SHOCK HAZARD | Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.                                                                                            |
| BURN HAZARD  | Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.                                                                                   |

Allen-Bradley, Rockwell Automation, and XM are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

### **Safety Approvals**

# The following information applies when operating this equipment in hazardous locations.

Products marked "CL I, DIV 2, GP A, B, C, D" are suitable for use in Class I Division 2 Groups A, B, C, D, Hazardous Locations and nonhazardous locations only. Each product is supplied with markings on the rating nameplate indicating the hazardous location temperature code. When combining products within a system, the most adverse temperature code (lowest "T" number) may be used to help determine the overall temperature code of the system. Combinations of equipment in your system arfe subject to investigation by the local Authority Having Jurisdiction at the time of installation.

# Informations sur l'utilisation de cet équipement en environnements dangereux.

Les produits marqués "CL I, DIV 2, GP A, B, C, D" ne conviennent qu'à une utilisation en environnements de Classe I Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livré avec des marquages sur sa plaque d'identification qui indiquent le code de température pour les environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le système sont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.

#### WARNING

# $\Lambda$

#### **EXPLOSION HAZARD -**

- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous
- Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous.
   Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.
- Substitution of components may impair suitability for Class I, Division 2.
- If this product contains batteries, they must only be changed in an area known to be nonhazardous.

#### **AVERTISSEMENT**



#### **RISQUE D'EXPLOSION -**

- Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher l'équipement.
- Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les connecteurs externes reliés à cet équipement à l'aide de vis, loquets coulissants, connecteurs filetés ou autres moyens fournis avec ce produit.
- La substitution de composants peut rendre cet équipement inadapté à une utilisation en environnement de Classe I, Division 2.
- S'assurer que l'environnement est classé non dangereux avant de changer les piles.

#### **IMPORTANT**

Wiring to or from this device, which enters or leaves the system enclosure, must utilize wiring methods suitable for Class I, Division 2 Hazardous Locations, as appropriate for the installation in accordance with the product drawings as indicated in the following table.

| Model  | Catalog Number  | Catalog Number Haz Location Drawings* |                | Model  | Catalog Number | Haz Location Drawings* |                |
|--------|-----------------|---------------------------------------|----------------|--------|----------------|------------------------|----------------|
|        |                 | w/o<br>Barriers                       | w/<br>Barriers |        |                | w/o<br>Barriers        | w/<br>Barriers |
| XM-120 | 1440-VST0201RA  |                                       |                | XM-320 | 1440-TPS0201RB | 48238-HAZ              | 48239-HAZ      |
| XM-121 | 1440-VLF0201RA  | 48178-HAZ                             | 48179-HAZ      | XM-360 | 1440-TPR0600RE |                        |                |
| XM-122 | 1440-VSE0201RA  | -                                     |                | XM-361 | 1440-TUN0600RE | 48295-HAZ              | 48299-HAZ      |
| XM-123 | 1440-VAD0201RA  | -                                     |                | XM-361 | 1440-TTC0600RE |                        |                |
| XM-160 | 1440-VDRS0600RH |                                       |                | XM-440 | 1440-RMA0004RC | 48240-HAZ              | N/A            |
| XM-161 | 1440-VDRS0606RH | 51263-HAZ                             | 51264-HAZ      | XM-441 | 1440-REX0004RD | 48241-HAZ              | N/A            |
| XM-162 | 1440-VDRP0600RH |                                       |                | XM-442 | 1440-REX0304RG | 48642-HAZ              | N/A            |
| XM-220 | 1440-SPD0201RB  | 48640-HAZ                             | 48641-HAZ      |        |                |                        |                |

<sup>\*</sup> Drawings are available on the included CD

|                           | Chapter 1                                     |    |
|---------------------------|-----------------------------------------------|----|
| Introduction              | Introducing the XM-122 gSE Vibration Module   | 1  |
|                           | XM-122 Module Components                      |    |
|                           | Using this Manual                             |    |
|                           | Organization                                  |    |
|                           | Document Conventions                          |    |
|                           | Chapter 2                                     |    |
| Installing the XM-122 gSE | XM Installation Requirements                  | 6  |
| Vibration Module          | Wiring Requirements                           |    |
| VIDIACION IVIOLUIC        | Power Requirements                            |    |
|                           | Grounding Requirements                        |    |
|                           | Mounting the Terminal Base Unit               |    |
|                           | DIN Rail Mounting                             |    |
|                           | Interconnecting Terminal Base Units           |    |
|                           | Panel/Wall Mounting                           |    |
|                           | Connecting Wiring for Your Module             |    |
|                           |                                               |    |
|                           | Terminal Block Assignments                    |    |
|                           | Connecting the Power Supply                   |    |
|                           | Connecting the Relays                         |    |
|                           | Connecting the Tachometer Signal              |    |
|                           | Connecting the Buffered Outputs               |    |
|                           | Connecting the Transducer                     |    |
|                           | Connecting the Remote Relay Reset Signal      |    |
|                           | Connecting the Setpoint Multiplication Switch |    |
|                           | Connecting the 4-20 mA Outputs                |    |
|                           | PC Serial Port Connection                     |    |
|                           | DeviceNet Connection                          |    |
|                           | Mounting the Module                           |    |
|                           | Module Indicators                             |    |
|                           | Basic Operations                              |    |
|                           | Powering Up the Module                        | 52 |
|                           | Manually Resetting Relays                     | 52 |
|                           | Chapter 3                                     |    |
| Configuration Parameters  | XM-122 Measurement Modes                      | 56 |
| _                         | Measurement Time                              | 57 |
|                           | Channel Transducer Parameters                 | 58 |
|                           | Channel Signal Processing Parameters          |    |
|                           | Measurement Parameters                        |    |
|                           | Overall Measurement Parameters                |    |
|                           | Sum Harmonics Measurement Parameter           |    |
|                           | Spectrum/Waveform Parameters                  |    |
|                           | Band Measurement Parameters                   |    |
|                           | Speed Measurement Parameter                   |    |
|                           | gSE Parameters                                |    |
|                           | 0                                             |    |

|                           | gSE Signal Processing Parameters                   |     |
|---------------------------|----------------------------------------------------|-----|
|                           | gSE Spectrum Parameters                            | 70  |
|                           | Tachometer Parameters                              | 71  |
|                           | Tachometer Transducer Parameters                   | 71  |
|                           | Tachometer Signal Processing Parameters            | 72  |
|                           | Alarm Parameters                                   | 74  |
|                           | Relay Parameters                                   | 78  |
|                           | 4-20 mA Output Parameters                          | 82  |
|                           | Triggered Trend Parameters                         | 83  |
|                           | SU/CD Trend Parameters                             | 85  |
|                           | I/O Data Parameters                                | 88  |
|                           | Data Parameters                                    | 89  |
|                           | Monitor Data Parameters                            | 89  |
|                           | Alarm and Relay Status Parameters                  | 92  |
|                           | Device Mode Parameters                             | 93  |
|                           |                                                    |     |
|                           | Appendix A                                         |     |
| Specifications            |                                                    | 95  |
|                           | Appendix B                                         |     |
| DeviceNet Information     | Electronic Data Sheets                             | 103 |
| Jevicewet iiiioiiiiatioii |                                                    |     |
|                           | Changing Operation Modes                           |     |
|                           | Transition to Program Mode  Transition to Run Mode |     |
|                           |                                                    |     |
|                           | XM Services                                        |     |
|                           | Invalid Configuration Errors                       |     |
|                           | XM-122 I/O Message Formats                         |     |
|                           | Poll Message Format                                |     |
|                           | COS Message Format                                 |     |
|                           | Bit-Strobe Message Format                          |     |
|                           | ADR for XM Modules                                 | 116 |
|                           | Appendix C                                         |     |
| DeviceNet Objects         | Identity Object (Class ID 01H)                     | 120 |
|                           | Class Attributes                                   |     |
|                           | Instance Attributes.                               |     |
|                           | Status                                             |     |
|                           | Services                                           |     |
|                           | DeviceNet Object (Class ID 03H)                    |     |
|                           | Class Attributes                                   |     |
|                           | Instance Attributes                                |     |
|                           | Assembly Object (Class ID 04H)                     |     |
|                           | Class Attribute                                    |     |
|                           |                                                    |     |
|                           | Instances.                                         | 123 |

| Assembly Instance Attribute Data Format    | . 124 |
|--------------------------------------------|-------|
| Services                                   | . 133 |
| Connection Object (Class ID 05H)           | . 133 |
| Class Attributes                           | . 133 |
| Instances                                  | . 133 |
| Instance Attributes                        | . 134 |
| Services                                   | . 135 |
| Discrete Input Point Object (Class ID 08H) | . 135 |
| Class Attributes                           | . 135 |
| Instance Attributes                        | . 135 |
| Services                                   | . 136 |
| Analog Input Point (Class ID 0AH)          | . 136 |
| Class Attributes                           | . 136 |
| Instances                                  | . 136 |
| Instance Attributes                        | . 137 |
| Services                                   | . 137 |
| Parameter Object (Class ID 0FH)            | . 138 |
| Class Attributes                           | . 138 |
| Instances                                  | . 139 |
| Instance Attributes                        | . 146 |
| Services                                   | . 147 |
| Acknowledge Handler Object (Class ID 2BH)  | . 147 |
| Class Attributes                           |       |
| Instances                                  | . 148 |
| Instance Attributes                        | . 148 |
| Services                                   | . 148 |
| Alarm Object (Class ID 31DH)               | . 148 |
| Class Attributes                           |       |
| Instances                                  | . 149 |
| Instance Attributes                        | . 149 |
| Services                                   | . 151 |
| Band Measurement Object (Class ID 31EH)    | . 151 |
| Class Attributes                           | . 151 |
| Instance Attributes                        | . 152 |
| Services                                   | . 152 |
| Channel Object (Class ID 31FH)             | . 153 |
| Class Attributes                           | . 153 |
| Instances                                  | . 153 |
| Services                                   | . 155 |
| Auto_Range                                 | . 155 |
| Device Mode Object (Class ID 320H)         |       |
| Class Attributes                           |       |
| Instance Attributes                        | . 157 |
| Services                                   | . 157 |

| Overall Measurement Object (Class ID 322H)           | 158 |
|------------------------------------------------------|-----|
| Class Attributes                                     | 158 |
| Instances                                            |     |
| Instance Attributes                                  | 158 |
| Services                                             |     |
| Relay Object (Class ID 323H)                         | 161 |
| Class Attributes                                     |     |
| Instances                                            | 161 |
| Instance Attributes                                  | 161 |
| Services                                             | 163 |
| Spectrum Waveform Measurement Object (Class ID 324H) | 163 |
| Class Attributes                                     | 163 |
| Instances                                            |     |
| Instance Attributes                                  | 164 |
| Services                                             | 165 |
| Get_Stored_Spectrum_Chunk/Get_Stored_Waveform_Chunk  | 166 |
| Get_Spectrum_Chunk/Get_Waveform_Chunk                | 166 |
| Speed Measurement Object (Class ID 325H)             | 170 |
| Class Attributes                                     | 170 |
| Instance Attributes                                  | 170 |
| Services                                             | 171 |
| Tachometer Channel Object (Class ID 326H)            | 171 |
| Class Attributes                                     | 171 |
| Instance Attributes                                  | 172 |
| Services                                             | 172 |
| Transducer Object (Class ID 328H)                    | 173 |
| Class Attributes                                     | 173 |
| Instances                                            | 173 |
| Instance Attributes                                  | 173 |
| Services                                             | 174 |
| Vector Measurement Object (Class ID 329H)            | 174 |
| Class Attributes                                     |     |
| Instances                                            | 175 |
| Instance Attributes                                  | 175 |
| 4-20 mA Output Object (Class ID 32AH)                | 176 |
| Class Attributes                                     | 176 |
| Instances                                            | 176 |
| Instance Attributes                                  | 177 |
| Services                                             | 177 |

|                                 | Appendix D                                               |     |
|---------------------------------|----------------------------------------------------------|-----|
| Wiring Connections for Previous | Terminal Block Assignments                               | 179 |
| Module Revisions                | Connecting the Transducer                                | 182 |
|                                 | Connecting an IEPE Accelerometer                         | 182 |
|                                 | Connecting a Non-Contact Sensor                          | 183 |
|                                 | Connecting a Powered Sensor                              | 185 |
|                                 | Connecting Two Accelerometers and a Non-Contact Sensor   | 186 |
|                                 | Connecting a Velocity Sensor and Two Non-Contact Sensors | 188 |
|                                 | Appendix E                                               |     |
| Guidelines for Setting the Full | XM-122 Full Scale Tables                                 | 192 |
| Scale Value                     | Example on Using Table                                   | 193 |
| Glossary                        |                                                          | 195 |
| Index                           |                                                          | 201 |

# Introduction

This chapter provides an overview of the XM-122 gSE Vibration module. It also discusses the components of the modules.

| For information about                       | See page |
|---------------------------------------------|----------|
| Introducing the XM-122 gSE Vibration Module | 1        |
| XM-122 Module Components                    | 2        |
| Using this Manual                           | 3        |

# Introducing the XM-122 gSE Vibration Module

The XM-122 gSE Vibration module is an intelligent 2-channel special-purpose vibration monitor. It is part of the Allen-Bradley<sup>TM</sup> XM<sup>®</sup> Series, a family of DIN rail mounted condition monitoring and protection modules that operate both in stand-alone applications or integrate with Programmable Logic Controllers (PLCs) and control system networks.

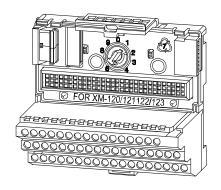
The XM-122 module includes special circuitry and firmware that enables it to measure both conventional vibration (similar to the XM-120) and g's Spike Energy<sup>TM</sup> (gSE). This makes the module ideal for monitoring machines with rolling element bearings.

gSE is an Entek developed signal processing technique that provides an accurate measure of the energy generated by transient or mechanical impacts. The gSE measurement provides early detection of surface flaws in rolling-element bearings, metal-to-metal contacts, insufficient bearing lubrication, and process-related problems, such as dry running, cavitation, flow change, and internal re-circulation.

The XM-122 alternates collection of conventional vibration measurements and gSE overall and gSE spectra measurements. The time the module spends updating each set of measurements during a monitoring-time is dependant on the configuration. The module continuously monitors transducer bias and speed as well.

The XM-122 can power and accept input from standard eddy current probe systems and Integrated Electronics Piezo Electric (IEPE) accelerometers. It can also accept signals from most standard voltage output measurement devices such as a velocity or pressure transducer. In addition to vibration inputs, the XM-122 accepts one tachometer input to provide speed measurement and order analysis functions.

The XM-122 also includes a single on-board relay, expandable to five, an integral tachometer, two 4-20 mA outputs, and a buffer output for each input. The module can collect data under steady-state and startup/coast-down conditions, capture trend and spectra or waveform data on event, and monitor up to 16 alarms making the module a complete monitoring system.


The module can operate stand-alone, or it can be deployed on a standard or dedicated DeviceNet network where it can provide real-time data and status information to other XM modules, PLCs, DCS and Condition Monitoring Systems.

The XM-122 can be configured remotely via the DeviceNet network, or locally using a serial connection to a PC or laptop. Refer to Chapter 3 for a list of the configuration parameters.

# XM-122 Module Components

The XM-122 consists of a terminal base unit and an instrument module. The XM-122 gSE Vibration Module and the XM-940 Terminal Base are shown below.

Figure 1.1 XM-122 Module Components





XM\*-122

XM-940 Dynamic Measurement Module Terminal Base Unit Cat. No. 1440-TB-A

• XM-940 Dynamic Measurement Module Terminal Base - A DIN rail mounted base unit that provides terminations for all field wiring required by XM Dynamic Measurement modules, including the XM-122.

3

 XM-122 gSE Vibration Module - The module mounts on the XM-940 terminal base via a keyswitch and a 96-pin connector. The module contains the measurement electronics, processors, relay, and serial interface port for local configuration.

#### **IMPORTANT**

The XM-441 Expansion Relay module may be connected to the XM-122 module via the XM-940 terminal base.

When connected to the module, the Expansion Relay module simply "expands" the capability of the XM-122 by adding four additional epoxy-sealed relays. The XM-122 controls the Expansion Relay module by extending to it the same logic and functional controls as the on-board relay.

# **Using this Manual**

This manual introduces you to the XM-122 gSE Vibration module. It is intended for anyone who installs, configures, or uses the XM-122 gSE Vibration module.

# **Organization**

To help you navigate through this manual, it is organized in chapters based on these tasks and topics.

Chapter 1 "Introduction" contains an overview of this manual and the XM-122 module.

Chapter 2 "Installing the XM-122 gSE Vibration Module' describes how to install, wire, and use the XM-122 module.

Chapter 3 "Configuration Parameters" provides a complete listing and description of the XM-122 parameters. The parameters can be viewed and edited using the XM Serial Configuration Utility software and a personal computer.

Appendix A "Specifications" lists the technical specifications for the XM-122 module.

Appendix B "DeviceNet Information" provides information to help you configure the XM-122 over a DeviceNet network.

Appendix C "DeviceNet Objects" provides information on the DeviceNet objects supported by the XM-122 module.

Appendix D "Wiring Connections for Previous Module Revisions" provides the terminal block assignments and wiring diagrams of earlier revisions of the XM-122 module (before revision D01).

Appendix E "Guidelines for Setting the Full Scale Value" provides guidelines for determining the optimal Channel Transducer Full Scale value in the XM-122 module.

For definitions of terms used in this Guide, see the Glossary at the end of the Guide.

#### **Document Conventions**

There are several document conventions used in this manual, including the following:

The XM-122 gSE Vibration module is referred to as XM-122, device, or module throughout this manual.

TIP

A tip indicates additional information which may be helpful.

**EXAMPLE** 

This convention presents an example.

# **Installing the XM-122 gSE Vibration Module**

This chapter discusses how to install and wire the XM-122 gSE Vibration module. It also describes the module indicators and the basic operations of the module.

| For information about             | See page |
|-----------------------------------|----------|
| XM Installation Requirements      | 6        |
| Mounting the Terminal Base Unit   | 13       |
| Connecting Wiring for Your Module | 17       |
| Mounting the Module               | 48       |
| Module Indicators                 | 49       |
| Basic Operations                  | 52       |

#### **ATTENTION**



#### **Environment and Enclosure**

This equipment is intended for use in a Pollution Degree 2 Industrial environment, in overvoltage Category II applications (as defined in IED publication 60664–1), at altitudes up to 2000 meters without derating.

This equipment is supplied as "open type" equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present, and appropriately designed to prevent personal injury resulting from accessibility to live parts. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.

See NEMA Standards publication 250 and IEC publication 60529, as applicable, for explanations of the degrees of protection provided by different types of enclosures.

# XM Installation Requirements

This section describes wire, power, and grounding requirements for an XM system.

## **Wiring Requirements**

Use solid or stranded wire. All wiring should meet the following specifications:

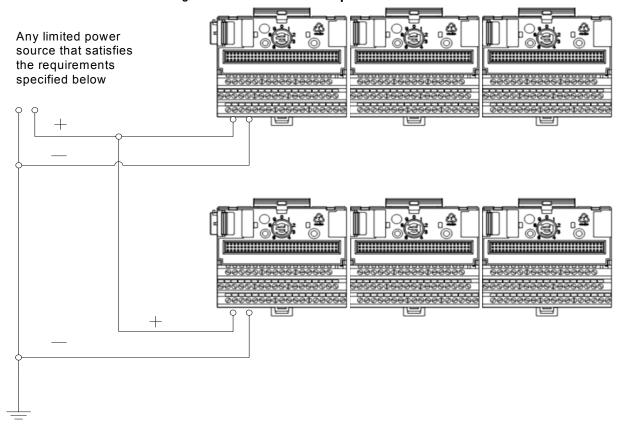
- 14 to 22 AWG copper conductors without pretreatment; 8 AWG required for grounding the DIN rail for electromagnetic interference (emi) purposes
- Recommended strip length 8 millimeters (0.31 inches)
- Minimum insulation rating of 300 V
- Soldering the conductor is forbidden
- Wire ferrules can be used with stranded conductors; copper ferrules recommended

#### **ATTENTION**



See the XM Documentation and Configuration Utility CD for Hazardous Locations installation drawings. The XM Documentation and Configuration Utility CD is packaged with the XM modules.

# **Power Requirements**


Before installing your module, calculate the power requirements of all modules interconnected via their side connectors. The total current draw through the side connector cannot exceed 3 A. Refer to the specifications for the specific modules for power requirements.

#### **ATTENTION**



A separate power connection is necessary if the total current draw of the interconnecting modules is greater than 3 A.

Figure 2.1 is an illustration of wiring modules using separate power connections.



**Figure 2.1 XM Modules with Separate Power Connections** 

#### **Power Supply Requirements**

| XM Power Supply Requirements |                                                 |  |
|------------------------------|-------------------------------------------------|--|
|                              | Listed Class 2 rated supply, or                 |  |
| Protection                   | Fused* ITE Listed SELV supply, or               |  |
|                              | Fused* ITE Listed PELV supply                   |  |
| Output Voltage               | 24 Vdc ± 10%                                    |  |
| Output Power                 | 100 Watts Maximum (~4A @ 24 Vdc)                |  |
| Static Regulation            | ± 2%                                            |  |
| Dynamic Regulation           | ± 3%                                            |  |
| Ripple                       | < 100mVpp                                       |  |
| Output Noise                 | Per EN50081-1                                   |  |
| Overshoot                    | < 3% at turn-on, < 2% at turn-off               |  |
| Hold-up Time                 | As required (typically 50mS at full rated load) |  |

<sup>\*</sup> When a fused supply is used the fuse must be a 5 amp, listed, fast acting fuse such as provided by Allen-Bradley part number 1440-5AFUSEKIT

### **IMPORTANT**

See Application Technique "XM Power Supply Solutions", publication ICM-AP005A-EN-E, for guidance in architecting power supplies for XM systems.

## **Grounding Requirements**

Use these grounding requirements to ensure safe electrical operating circumstances, and to help avoid potential emi and ground noise that can cause unfavorable operating conditions for your XM system.

#### DIN Rail Grounding

The XM modules make a chassis ground connection through the DIN rail. The DIN rail must be connected to a ground bus or grounding electrode conductor using 8 AWG or 1 inch copper braid. See Figure 2.2.

Use zinc-plated, yellow-chromated steel DIN rail (Allen-Bradley part no. 199-DR1 or 199-DR4) or equivalent to assure proper grounding. Using other DIN rail materials (e.g. aluminum, plastic, etc.), which can corrode, oxidize, or are poor conductors can result in improper or intermittent platform grounding.

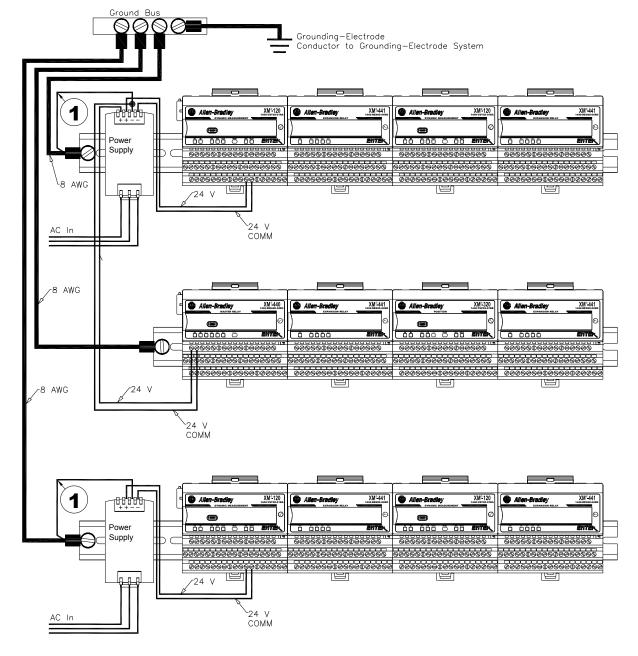



Figure 2.2 XM System DIN Rail Grounding

1 Use 14 AWG wire.

The grounding wire can be connected to the DIN rail using a DIN Rail Grounding Block (Figure 2.3).

To Earth Ground Din Rail Grounding Block A-B Cat. No. 1492-WG10

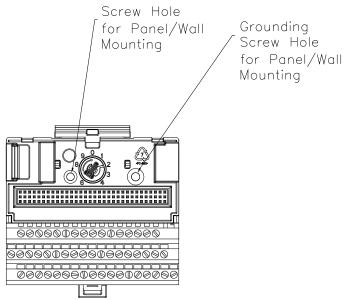

AWG 8
Wire

Figure 2.3 DIN Rail Grounding Block

## Panel/Wall Mount Grounding

The XM modules can also be mounted to a conductive mounting plate that is grounded. See Figure 2.5. Use the grounding screw hole provided on the terminal base to connect the mounting plate the Chassis terminals.

 $\label{thm:conding} \textbf{Figure 2.4 Grounding Screw on XM Terminal Base}$ 



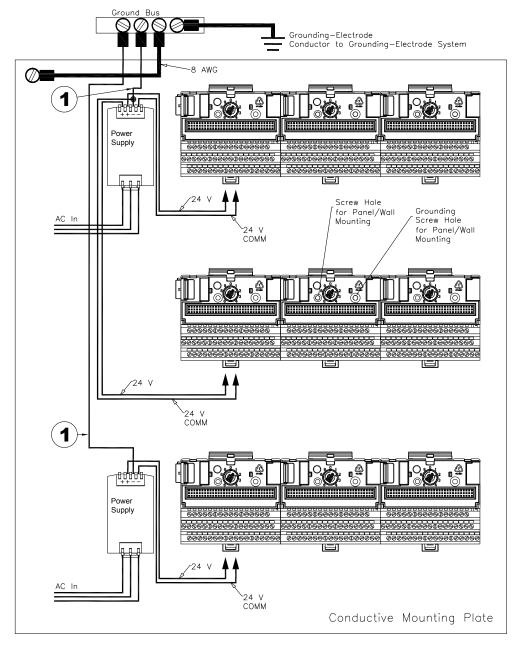



Figure 2.5 Panel/Wall Mount Grounding

1 Use 14 AWG wire.

#### 24 V Common Grounding

24 V power to the XM modules must be grounded. When two or more power supplies power the XM system, ground the 24 V Commons at a single point, such as the ground bus bar.

#### **IMPORTANT**

If it is not possible or practical to ground the -24Vdc supply, then it is possible for the system to be installed and operate ungrounded. However, if installed ungrounded then the system must not be connected to a ground through any other circuit unless that circuit is isolated externally. Connecting a floating system to a non-isolated ground could result in damage to the XM module(s) and/or any connected device. Also, operating the system without a ground may result in the system not performing to the published specifications regards measurement accuracy and communications speed, distance or reliability.

#### **IMPORTANT**

The 24 V Common and Signal Common terminals are internally connected. They are isolated from the Chassis terminals unless they are connected to ground as described in this section. See Terminal Block Assignments on page 18 for more information.

#### Transducer Grounding

Make certain the transducers are electrically isolated from earth ground. Cable shields must be grounded at one end of the cable, and the other end left floating or not connected. It is recommended that where possible, the cable shield be grounded at the XM terminal base (Chassis terminal) and not at the transducer.

#### DeviceNet Grounding

The DeviceNet network is functionally isolated and must be referenced to earth ground at a single point. XM modules do not require an external DeviceNet power supply. Connect DeviceNet V- to earth ground at one of the XM modules, as shown in Figure 2.6.

To Ground Bus

Sees DeviceNet

V
DeviceNet

Figure 2.6 Grounded DeviceNet V- at XM Module





Use of a separate DeviceNet power supply is not permitted. See Application Technique "XM Power Supply Solutions", publication ICM-AP005A-EN-E, for guidance in using XM with other DeviceNet products.

For more information on the DeviceNet installation, refer to the ODVA Planning and Installation Manual - DeviceNet Cable System, which is available on the ODVA web site (http://www.odva.org).

#### Switch Input Grounding

The Switch Input circuits are functionally isolated from other circuits. It is recommended that the Switch RTN signal be grounded at a single point. Connect the Switch RTN signal to the XM terminal base (Chassis terminal) or directly to the DIN rail, or ground the signal at the switch or other equipment that is wired to the switch.

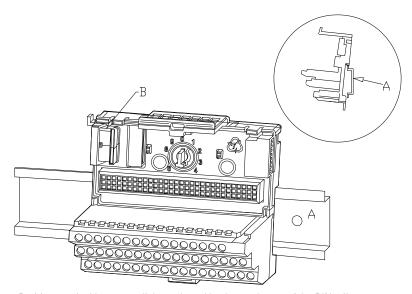
# Mounting the Terminal Base Unit

The XM family includes several different terminal base units to serve all of the XM modules. The XM-940 terminal base, Cat. No. 1440-TB-A, is the only terminal base unit used with the XM-122 module.

The terminal base can be DIN rail or wall/panel mounted. Refer to the specific method of mounting below.

#### ATTENTION

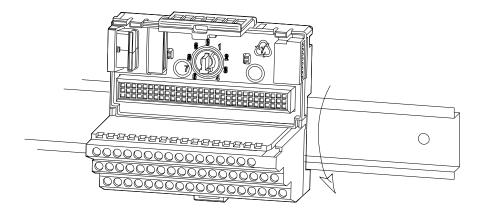



The XM modules make a chassis ground connection through the DIN rail. Use zinc plated, yellow chromated steel DIN rail to assure proper grounding. Using other DIN rail materials (e.g. aluminum, plastic, etc.), which can corrode, oxidize or are poor conductors can result in improper or intermittent platform grounding.

You can also mount the terminal base to a grounded mounting plate. Refer to Panel/Wall Mount Grounding on page 10.

# **DIN Rail Mounting**

Use the following steps to mount the XM-940 terminal base unit on a DIN rail (A-B pt no. 199-DR1 or 199-DR4).


1. Position the terminal base on the 35 x 7.5 mm DIN rail (A).



Position terminal base at a slight angle and hook over the top of the DIN rail.

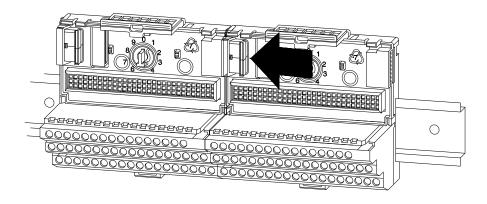
**2.** Slide the terminal base unit over leaving room for the side connector (B).

**3.** Rotate the terminal base onto the DIN rail with the top of the rail hooked under the lip on the rear of the terminal base.



**4.** Press down on the terminal base unit to lock the terminal base on the DIN rail. If the terminal base does not lock into place, use a screwdriver or similar device to open the locking tab, press down on the terminal base until flush with the DIN rail and release the locking tab to lock the base in place.

# **Interconnecting Terminal Base Units**


Follow the steps below to install another terminal base unit on the DIN rail.

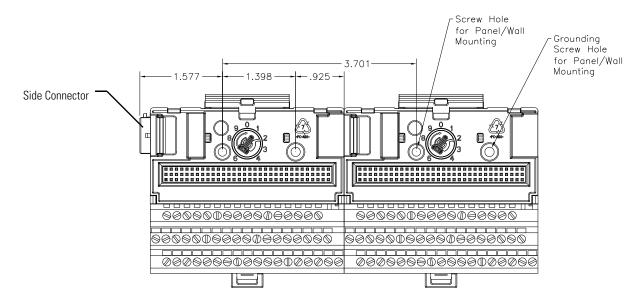
IMPORTANT

Make certain you install the terminal base units in order of left to right.

- 1. Position the terminal base on the 35 x 7.5 mm DIN rail (A).
- 2. Make certain the side connector (B) is **fully retracted** into the base unit.
- **3.** Slide the terminal base unit over tight against the neighboring terminal base. Make sure the hook on the terminal base slides under the edge of the terminal base unit.
- **4.** Press down on the terminal base unit to lock the terminal base on the DIN rail. If the terminal base does not lock into place, use a screwdriver or similar device to open the locking tab, press down on the terminal base until flush with the DIN rail and release the locking tab to lock the base in place.

**5.** Gently push the side connector into the side of the neighboring terminal base to complete the backplane connection.



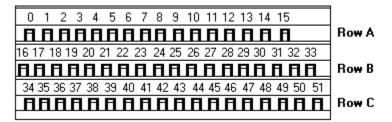

# **Panel/Wall Mounting**

Installation on a wall or panel consists of:

- laying out the drilling points on the wall or panel
- drilling the pilot holes for the mounting screws
- installing the terminal base units and securing them to the wall or panel

Use the following steps to install the terminal base on a wall or panel.

1. Lay out the required points on the wall/panel as shown in the drilling dimension drawing below.




- 2. Drill the necessary holes for the #6 self-tapping mounting screws.
- **3.** Secure the terminal base unit using two #6 self-tapping screws.
- **4.** To install another terminal base unit, retract the side connector into the base unit. Make sure it is **fully retracted**.
- 5. Position the terminal base unit up tight against the neighboring terminal base. Make sure the hook on the terminal base slides under the edge of the terminal base unit.
- **6.** Gently push the side connector into the side of the neighboring terminal base to complete the backplane connection.
- 7. Secure the terminal base to the wall with two #6 self-tapping screws.

# Connecting Wiring for Your Module

Wiring to the module is made through the terminal base unit on which the module mounts. The XM-122 is compatible only with the XM-940 terminal base unit, Cat. No. 1440-TB-A.

Figure 2.7 XM-940 Terminal Base Unit

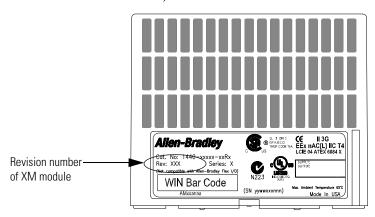


XM-940 (Cat. No. 1440-TB-A)

### **Terminal Block Assignments**

The terminal block assignments and descriptions for the XM-122 module are shown below.






The terminal block assignments are different for different XM modules. The following table applies only to the XM-122 module revision D01 (and later). If you have an earlier revision of the module, refer to Appendix D for its terminal block assignments.

Refer to the installation instructions for the specific XM module for its terminal assignments.

TIP

The XM module's revision number is on the product label (which is located on the front of the XM module, as shown below).



## WARNING



#### **EXPLOSION HAZARD**

Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.

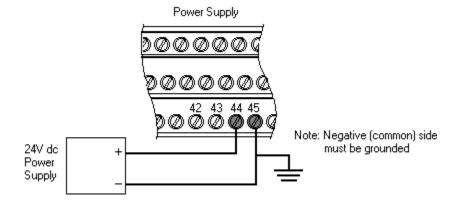
Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.

#### **Terminal Block Assignments**

| No. | Name                       | Description                                                                                                                                                                                                                                          |
|-----|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Xducer 1 (+)               | Vibration transducer 1 connection                                                                                                                                                                                                                    |
| 1   | Xducer 2 (+)               | Vibration transducer 2 connection                                                                                                                                                                                                                    |
| 2   | Buffer 1 (+)               | Vibration signal 1 buffered output                                                                                                                                                                                                                   |
| 3   | Buffer 2 (+)               | Vibration signal 2 buffered output                                                                                                                                                                                                                   |
| 4   | Tach/Signal In (+)         | Tachometer transducer/signal input, positive side                                                                                                                                                                                                    |
| 5   | Buffer Power 1 IN          | Channel 1 buffer power input Connect to terminal 6 for positive biased transducers or terminal 21 for negative biased transducers                                                                                                                    |
| 6   | Positive Buffer Bias       | Provides positive (-5 V to +24 V) voltage compliance to buffered outputs Connect to terminals 5 (CH 1) and 22 (CH 2) for positive bias transducers                                                                                                   |
| 7   | TxD                        | PC serial port, transmit data                                                                                                                                                                                                                        |
| 8   | RxD                        | PC serial port, receive data                                                                                                                                                                                                                         |
| 9   | XRTN <sup>1</sup>          | Circuit return for TxD and RxD                                                                                                                                                                                                                       |
| 10  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                                                          |
| 11  | 4-20 mA 1 (+)              | 4-20 mA output                                                                                                                                                                                                                                       |
| 12  | 4-20 mA 1 (-)              | 300 ohm maximum load                                                                                                                                                                                                                                 |
| 13  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                                                          |
| 14  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                                                          |
| 15  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                                                          |
| 16  | Xducer 1 (-) <sup>1</sup>  | Vibration transducer 1 connection                                                                                                                                                                                                                    |
| 17  | Xducer 2 (-) <sup>1</sup>  | Vibration transducer 2 connection                                                                                                                                                                                                                    |
| 18  | Signal Common <sup>1</sup> | Vibration buffered output return                                                                                                                                                                                                                     |
| 19  | TACH Buffer                | Tachometer transducer/signal output                                                                                                                                                                                                                  |
| 20  | Tachometer (-)             | Tachometer transducer/signal return, TACH Buffer return                                                                                                                                                                                              |
| 21  | Buffer/Xducer Pwr (-)      | Provides negative (-24 V to +9 V) voltage compliance to buffered outputs Connect to terminals 5 (CH 1) and 22 (CH 2) for negative bias transducers Transducer power supply output, negative side; used to power external sensor (40 mA maximum load) |

## **Terminal Block Assignments**

| No. | Description              |                                                                                                                                                                                                              |  |  |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 22  | Buffer Power 2 IN        | Channel 2 buffer power input<br>Connect to terminal 6 for positive biased transducers or terminal 21 for<br>negative biased transducers                                                                      |  |  |
| 23  | CAN_High                 | DeviceNet bus connection, high differential (white wire)                                                                                                                                                     |  |  |
| 24  | CAN_Low                  | DeviceNet bus connection, low differential (blue wire)                                                                                                                                                       |  |  |
| 25  | +24V Out                 | Internally connected to 24V In 1 (terminal 44) Used to daisy chain power if XM modules are not plugged into each other                                                                                       |  |  |
| 26  | DNet V (+)               | DeviceNet bus power input, positive side (red wire)                                                                                                                                                          |  |  |
| 27  | DNet V (-)               | DeviceNet bus power input, negative side (black wire)                                                                                                                                                        |  |  |
| 28  | 24 V Common <sup>1</sup> | Internally connected to 24 V Common (terminals 43 and 45) Used to daisy chain power if XM modules are not plugged into each other If power is not present on terminal 44, there is no power on this terminal |  |  |
| 29  | 4-20 mA 2 (+)            | 4-20 mA output<br>300 ohm maximum load                                                                                                                                                                       |  |  |
| 30  | 4-20 mA 2 (-)            |                                                                                                                                                                                                              |  |  |
| 31  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 32  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 33  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 34  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 35  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 36  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 37  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 38  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |  |  |
| 39  | SetPtMult                | Switch input to activate Set Point Multiplication (active closed)                                                                                                                                            |  |  |
| 40  | Switch RTN               | Switch return, shared between SetPtMult and Reset Relay                                                                                                                                                      |  |  |
| 41  | Reset Relay              | Switch input to reset internal relay (active closed)                                                                                                                                                         |  |  |
| 42  | Reserved                 |                                                                                                                                                                                                              |  |  |
| 43  | 24 V Common <sup>1</sup> | Internally DC-coupled to circuit ground                                                                                                                                                                      |  |  |
| 44  | +24 V In                 | Connection to primary external +24 V power supply, positive side                                                                                                                                             |  |  |
| 45  | 24 V Common <sup>1</sup> | Connection to external +24 V power supply, negative side (internally DC-coupled to circuit ground)                                                                                                           |  |  |
| 46  | Relay N.C. 1             | Relay Normally Closed contact 1                                                                                                                                                                              |  |  |
| 47  | Relay Common 1           | Relay Common contact 1                                                                                                                                                                                       |  |  |
| 48  | Relay N.O. 1             | Relay Normally Open contact 1                                                                                                                                                                                |  |  |
| 49  | Relay N.O. 2             | Relay Normally Open contact 2                                                                                                                                                                                |  |  |
| 50  | Relay Common 2           | Relay Common contact 2                                                                                                                                                                                       |  |  |
| 51  | Relay N.C. 2             | Relay Normally Closed contact 2                                                                                                                                                                              |  |  |


<sup>1</sup> Terminals are internally connected and isolated from the Chassis terminals.

# **Connecting the Power Supply**

Power supplied to the module must be nominally 24 Vdc ( $\pm 10\%$ ) and must be a Class 2 rated circuit.

Wire the DC-input power supply to the terminal base unit as shown in Figure 2.8.

**Figure 2.8 DC Input Power Supply Connections** 



#### **IMPORTANT**

A Class 2 circuit can be provided by use of an NEC Class 2 rated power supply, or by using a SELV or PELV rated power supply with a 5 Amp current limiting fuse installed before the XM module(s).

#### **IMPORTANT**

24Vdc needs to be wired to terminal 44 (+24 V In) to provide power to the device and other XM modules linked to the wired terminal base via the side connector.

#### **ATTENTION**



The power connections are different for different XM modules. Refer to the installation instructions for your specific XM module for complete wiring information.

### **Connecting the Relays**

The XM-122 has both Normally Open (NO) and Normally Closed (NC) relay contacts. Normally Open relay contacts close when the control output is energized. Normally Closed relay contacts open when the control output is energized.

The alarms associated with the relay and whether the relay is normally de-energized (non-failsafe) or normally energized (failsafe) depends on the configuration of the module. Refer to Relay Parameters on page 78 for details.

Table shows the on-board relay connections for the module.

#### **IMPORTANT**

All XM relays are double pole. This means that each relay has two contacts in which each contact operates independently but identically. The following information and illustrations show wiring solutions for both contacts; although, in many applications it may be necessary to wire only one contact.

TIP

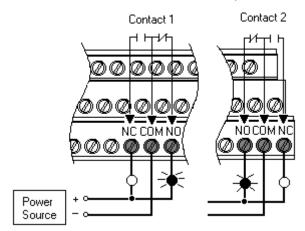
The Expansion Relay module may be connected to the module to provide additional relays. Refer the XM-441 Expansion Relay Module User Guide for wiring details.

#### **IMPORTANT**

The NC/NO terminal descriptions on page 20 correspond to a de-energized (unpowered) relay.

When the relay is configured for non-failsafe operation, the relay is normally de-energized.

When the relay is configured for failsafe operation, the relay is normally energized, and the behavior of the NC and NO terminals is inverted.


Table 2.1 Relay Connections for XM-122

| Configured for<br>Failsafe Operation |        |               | Relay 1 Terminals |           |
|--------------------------------------|--------|---------------|-------------------|-----------|
| Nonalarm                             | Alarm  | Wire Contacts | Contact 1         | Contact 2 |
| Closed                               | Opened | COM           | 47                | 50        |
|                                      |        | NO            | 48                | 49        |
| Opened                               | Closed | СОМ           | 47                | 50        |
|                                      |        | NC            | 46                | 51        |

| Configu<br>Non-failsaf | ured for<br>e Operation |               | Relay 1 Terminals |           |
|------------------------|-------------------------|---------------|-------------------|-----------|
| Nonalarm               | Alarm                   | Wire Contacts | Contact 1         | Contact 2 |
| Closed                 | Opened                  | COM           | 47                | 50        |
|                        |                         | NC            | 46                | 51        |
| Opened                 | Closed                  | COM           | 47                | 50        |
|                        |                         | NO            | 48                | 49        |

Figures 2.9 and 2.10 illustrate the behavior of the NC and NO terminals when the relay is wired for failsafe, alarm or nonalarm condition or non-failsafe, alarm or nonalarm condition.

Figure 2.9 Relay Connection - Failsafe, Nonalarm Condition Non-failsafe, Alarm Condition



Contact 1 Contact 2

NC COM NO

NO COM NO

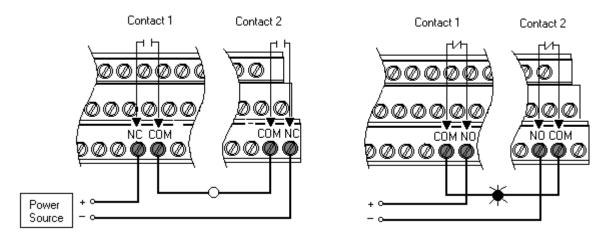

Power Source

Figure 2.10 Relay Connection - Failsafe, Alarm Condition Non-failsafe, Nonalarm Condition

#### Alternate Relay Wiring

Figures 2.11 and 2.12 illustrate how to wire both ends of a single external indicator to the XM terminal base for failsafe, nonalarm or alarm condition or non-failsafe, nonalarm or alarm condition.

Figure 2.11 Relay Connection - Failsafe, Nonalarm Condition Non-failsafe, Alarm Condition



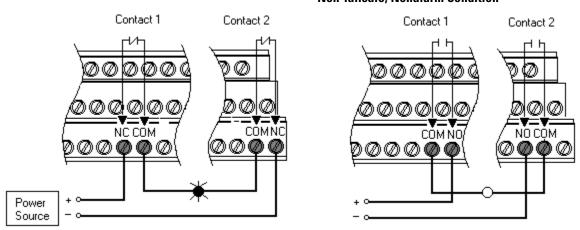
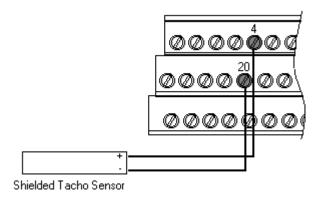



Figure 2.12 Relay Connection - Failsafe, Alarm Condition Non-failsafe, Nonalarm Condition

## **Connecting the Tachometer Signal**

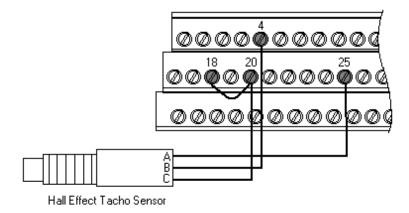
The XM-122 provides a single tachometer input signal. The signal processing performed on the tachometer signal depends on the configuration of the module. See page 71 for a description of the tachometer parameters.


#### **IMPORTANT**

If you are not using the tachometer input, set the **Pulses per Revolution** parameter to zero (0). This will disable the tachometer measurement and prevent the module from indicating a tachometer fault (TACH indicator flashing yellow). A tachometer fault occurs when no signal pulses are received on the tachometer input signal for a relatively long period.

#### Connecting a Magnetic Pickup Tachometer

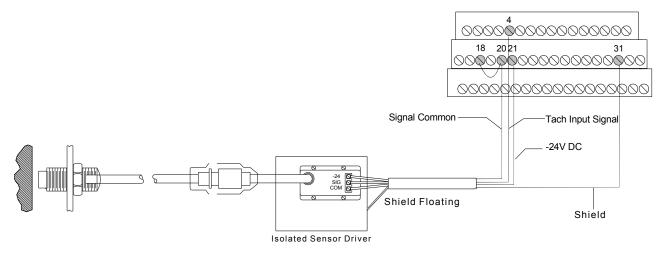
Figure 2.13 shows the wiring of a magnetic pickup tachometer to the terminal base unit.


Figure 2.13 Tachometer Signal Connection



Connecting a Hall Effect Tachometer Sensor

Figure 2.14 shows the wiring of a Hall Effect Tachometer Sensor, Cat. No. 44395, to the terminal base unit.


**Figure 2.14 Hall Effect Tachometer Signal Connection** 



# Connecting a Non-Contact Sensor to the Tachometer Signal

Figure 2.15 shows the wiring of a non-contact sensor to the tachometer input signal.

Figure 2.15 Non-Contact Sensor to Tachometer Signal Connection



# **Connecting the Buffered Outputs**

The XM-122 provides buffered outputs of all transducer input signals. The buffered output connections may be used to connect the module to portable data collectors or other online systems.

Figure 2.16 shows the buffered output connections for the module.

Signal 1 Buffered Output

Signal 2 Buffered Output

Signal 2 Buffered Output

BNC

BNC

BNC

**Figure 2.16 Buffered Output Connections** 

# **IMPORTANT**

# Applies only to XM-122 module revision D01 (and later).

The voltage operating range of the buffered outputs must be configured to coincide with the corresponding transducer bias range. This operating range is configured by placing a jumper from terminal 5 (channel 1) and terminal 22 (channel) to either terminal 6 (Positive Buffer Bias) or terminal 21 (Buffer -), depending on the transducer. See Table 2.2. The buffered output operating range is configured independently per channel.

**Table 2.2 Configuring Buffered Output Input Range** 

| Transducer    | Input Range | Channel | Connect Terminal | To Terminal |
|---------------|-------------|---------|------------------|-------------|
| Negative Bias | -24 to +9 V | 1       | 5                | 21          |
|               |             | 2       | 22               | 21          |
| Positive Bias | -5 to +24 V | 1       | 5                | 6           |
|               |             | 2       | 22               | 6           |
| Non-Bias      | -5 to +9 V  | 1       |                  |             |
|               |             | 2       |                  |             |

# **Connecting the Transducer**

The XM-122 can accept input from any Allen-Bradley non-contact eddy current probe, a standard IEPE accelerometer, a velocity transducer, AC voltage output, or a DC voltage output measurement device.

# **IMPORTANT**

The XM-122 module can produce the gSE measurement only with an IEPE accelerometer or an externally powered sensor.

# Connecting an IEPE Accelerometer

The following figures show the wiring of an IEPE accelerometer to the terminal base unit.

# **IMPORTANT**

Figures 2.17 and 2.18 show the wiring to the XM-122 module revision D01 (and later). If you have an earlier revision of the module, refer to Appendix D for wiring information.

# **ATTENTION**



You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

#### **IMPORTANT**

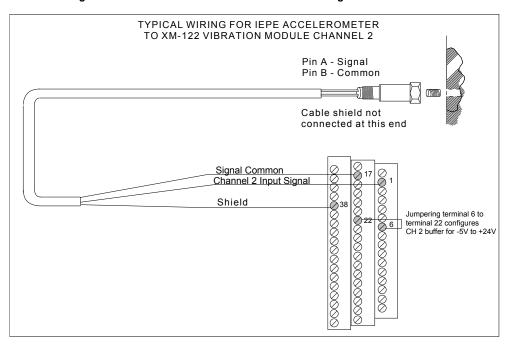
The internal transducer power supply is providing power to the IEPE accelerometer. Make certain the **IEPE Power** parameter is enabled. Refer to Channel Transducer Parameters on page 58.

#### **IMPORTANT**

A jumper from terminal 5 to terminal 6 is required for channel 1 buffered output. A jumper from terminal 22 to terminal 6 is required for channel 2 buffered output. Refer to Configuring Buffered Output Input Range on page 28.

TYPICAL WIRING FOR IEPE ACCELEROMETER
TO XM-122 VIBRATION MODULE CHANNEL 1

Pin A - Signal
Pin B - Common
Cable shield not connected at this end


Signal Common
Channel 1 Input Signal
Shield

Shield

Jumpering terminal 5 to terminal 6 configures
CH 1 buffer for -5V to +24V

Figure 2.17 IEPE Accelerometer to Channel 1 Wiring

Figure 2.18 IEPE accelerometer to channel 2 wiring



# Connecting a Non-contact Sensor

The figures below show the wiring of a non-contact sensor to the terminal base unit.

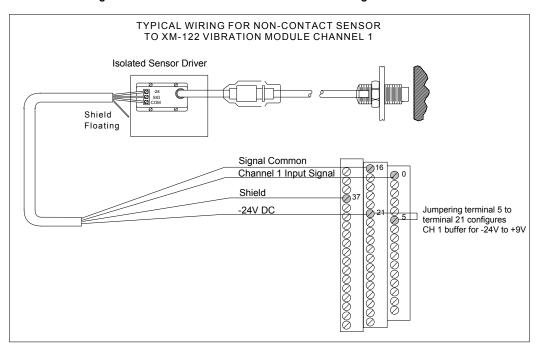
#### **IMPORTANT**

Figures 2.19 and 2.20 show the wiring to the XM-122 module revision D01 (and later). If you have an earlier revision of the module, refer to Appendix D for wiring information.

#### **ATTENTION**



You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).


# **IMPORTANT**

The internal transducer power supply is providing power to the non-contact sensor.

# **IMPORTANT**

A jumper from terminal 5 to terminal 21 is required for channel 1 buffered output. A jumper from terminal 22 to terminal 21 is required for channel 2 buffered output. Refer to Configuring Buffered Output Input Range on page 28.

Figure 2.19 Non-contact Sensor to Channel 1 Wiring



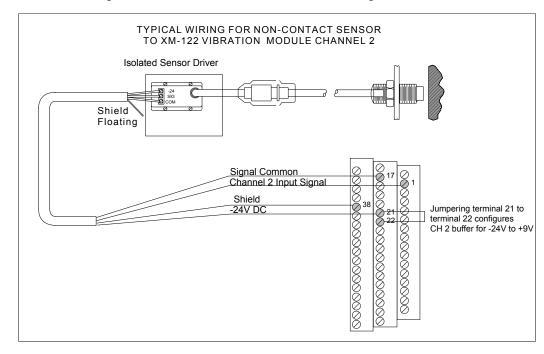



Figure 2.20 Non-contact Sensor to Channel 2 Wiring

# Connecting a Passive Transducer

Figures 2.21 and 2.22 show the wiring of a passive transducer, such as a velocity sensor, to the terminal base unit.



You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

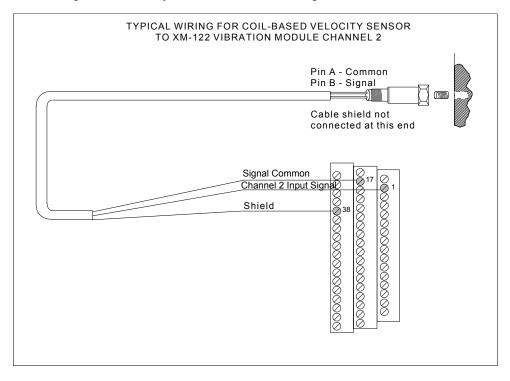


The module does not power the sensor. It measures only the input voltage.

TYPICAL WIRING FOR COIL-BASED VELOCITY SENSOR
TO XM-122 VIBRATION MODULE CHANNEL 1

Pin A - Common
Pin B - Signal

Cable shield not
connected at this end


Signal Common
Channel 1 Input Signal

Shield

37

Figure 2.21 Velocity Sensor to Channel 1 Wiring





# Connecting a Powered Sensor

The following figures show the wiring of a powered sensor, such as the Model 580 Vibration Pickup, to the terminal base unit.

# **IMPORTANT**

Figures 2.23 and 2.24 show the wiring to the XM-122 module revision D01 (and later). If you have an earlier revision of the module, refer to Appendix D for wiring information.

#### ATTENTION



You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

# **IMPORTANT**

A jumper from terminal 5 to terminal 6 is required for channel 1 buffered output. A jumper from terminal 22 to terminal 6 is required for channel 2 buffered output. Refer to Configuring Buffered Output Input Range on page 28.

#### ATTENTION



Figures 2.23 and 2.24 show the wiring of a Model 580 Vibration Pickup, which is a +24 V transducer. The +24 V sensors powered from pin 25 **do not** utilize the redundant power connection to the XM-122. So if primary 24 V power is lost, the +24 V sensor will lose power regardless of whether the XM-122 remains powered through the redundant power terminals.

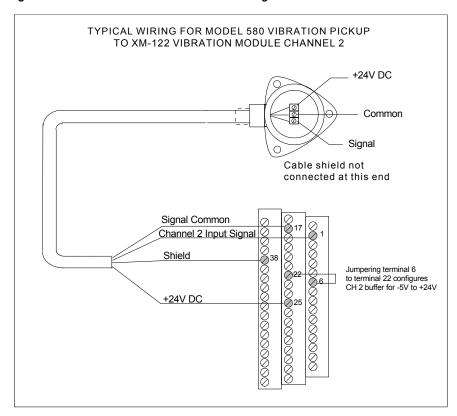
If redundant power is required then use a redundant power supply (Allen-Bradley 1606-series is recommended).

TYPICAL WIRING FOR MODEL 580 VIBRATION PICKUP
TO XM-122 VIBRATION MODULE CHANNEL 1

+24V DC

Common
Signal
Cable shield not connected at this end

Signal Common
Channel 1 Input Signal
Shield


Shield

37

Jumpering terminal 5 to terminal 6 configures CH 1 buffer for -5V to +24V

Figure 2.23 Powered Sensor to Channel 1 Wiring

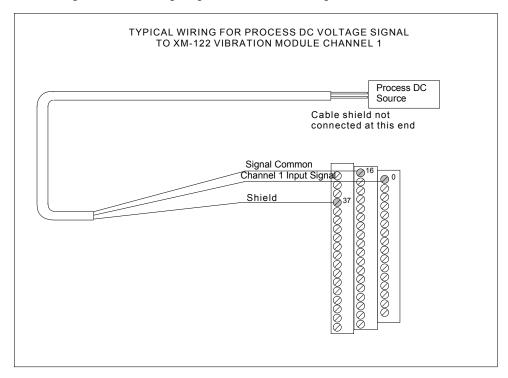




# Connecting a Process DC Voltage Signal

The following figures show the wiring from a process DC voltage signal to the terminal base unit.






You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

**IMPORTANT** 

The module does not power the sensor. It measures only the input voltage.

Figure 2.25 DC Voltage Signal to Channel 1 Wiring



TYPICAL WIRING FOR PROCESS DC VOLTAGE SIGNAL TO XM-122 VIBRATION MODULE CHANNEL 2

Process DC Source

Cable shield not connected at this end

Signal Common Channel 2 Input Signal 38

Figure 2.26 DC Voltage Signal to Channel 2 Wiring

# Connecting an IEPE Accelerometer and Non-Contact Sensor

Figure 2.27 shows the wiring of an IEPE accelerometer to channel 1 and the wiring of a non-contact sensor to channel 2.





Figure 2.27 shows the wiring to the XM-122 module revision D01 (and later). Earlier revisions of the module **do not** support this wiring configuration. Refer to Appendix D for information about wiring earlier revisions.

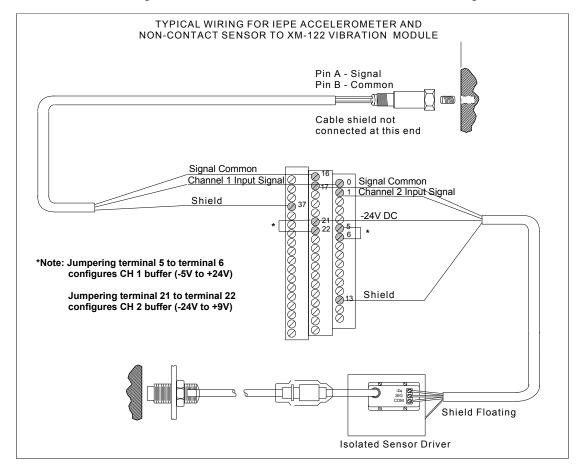
#### **ATTENTION**



You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

# **IMPORTANT**

Make certain the **IEPE Power** parameter for channel 1 is enabled so power is provided to the accelerometer. Refer to Channel Transducer Parameters on page 58.


# **IMPORTANT**

The internal transducer power supply is providing power to the non-contact sensor.

# **IMPORTANT**

A jumper from terminal 5 to terminal 6 is required for channel 1 buffered output. A jumper from terminal 22 to terminal 21 is required for channel 2 buffered output. Refer to Configuring Buffered Output Input Range on page 28.

Figure 2.27 IEPE Accelerometer and Non-Contact Sensor Wiring



# Connecting Two Accelerometers and a Non-Contact Sensor

Figure 2.28 shows the wiring of two IEPE accelerometers and a non-contact sensor to the terminal base. The IEPE accelerometers are wired to channel 1 and channel 2. The non-contact sensor is wired to the tachometer input signal.

#### ATTENTION



Figure 2.28 shows the wiring to the XM-122 module revision D01 (and later). If you have any earlier revision of the module, refer to Appendix D for wiring information.

#### ATTENTION



You may ground the cable shield to either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

# **IMPORTANT**

Make certain the **IEPE Power** parameter is enabled for both channel and channel so power is provided to the accelerometers. Refer to Channel Transducer Parameters on page 58.

# **IMPORTANT**

Transducer DC bias is monitored on all signals.

# **IMPORTANT**

A jumper from terminal 5 to terminal 6 is required for channel 1 buffered output. A jumper from terminal 22 to terminal 6 is required for channel 2 buffered output. Refer to Configuring Buffered Output Input Range on page 28.

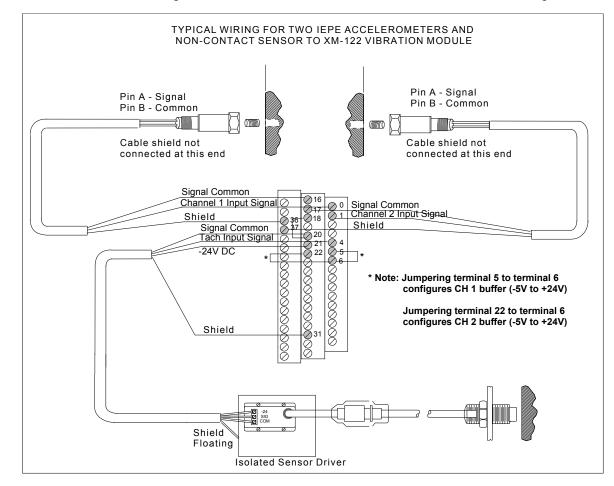



Figure 2.28 Two IEPE Accelerometers and a Non-Contact Sensor Wiring

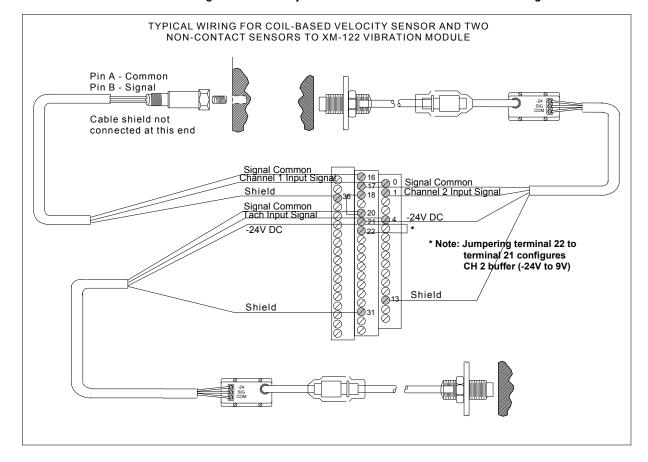
# Connecting a Velocity Sensor and Two Non-Contact Sensors

Figure 2.29 shows the wiring of a velocity sensor and two non-contact sensors to the terminal base unit. The velocity sensor is wired to channel 1. The first non-contact sensor is wired to channel 2, and the other non-contact sensor is wired to the tachometer input signal.

#### **IMPORTANT**

Figure 2.29 shows the wiring to the XM-122 module revision D01 (and later). If you have any earlier revision of the module, refer to Appendix D for wiring information.

# **ATTENTION**




You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 18).

Transducer DC bias is monitored on all signals.

A jumper from terminal 22 to terminal 21 is required for channel 2 buffered output. Refer to Configuring Buffered Output Input Range on page 28.

Figure 2.29 Velocity Sensor and Two Non-contact Sensor Wiring



# **Connecting the Remote Relay Reset Signal**

If you set the module relay to latching and the relay activates, the relay stays activated even when the condition that caused the alarm has ended. The remote relay reset signal enables you to reset your module relay remotely after you have corrected the alarm condition. This includes latched relays in the Expansion Relay module when it is attached to the XM-122.



If you set a module relay to latching, make sure that any linked relays, such as relays in an XM-440 Master Relay Module, are **not** configured as latching. When both relays are set to latching, the relay in each module will have to be independently reset when necessary.



You can discretely reset a relay using the serial or remote configuration tool.

Wire the Remote Relay Reset Signal to the terminal base unit as shown in Figure 2.30.

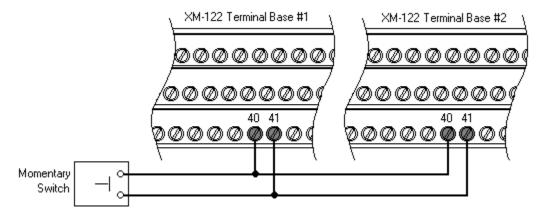
Figure 2.30 Remote Relay Reset Signal Connection







The Switch Input circuits are functionally isolated from other circuits. It is recommended that the Switch RTN signal be grounded at a signal point. Connect the Switch RTN signal to the XM terminal base (Chassis terminal) or directly to the DIN rail, or ground the signal at the switch or other equipment that is wired to the switch.

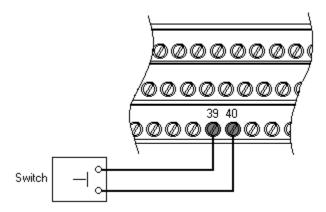

A single switch contact can also be shared by multiple XM modules wired in parallel as shown in Figure 2.31.

**ATTENTION** 



The relay reset connections may be different for different XM modules. Figure 2.31 applies only to the XM-122 module. Refer to the installation instructions for the module for its terminal assignments.

Figure 2.31 Typical Multiple XM Modules Remote Relay Reset Signal Connection




# **Connecting the Setpoint Multiplication Switch**

You can configure the module to multiply the alarm setpoints, or inhibit the alarms during the start-up period. This can be used to avoid alarm conditions that may occur during startup, for example, when the monitored machine passes through a critical speed.

Wire the Setpoint Multiplication switch to the terminal base unit as shown in Figure 2.32.

**Figure 2.32 Setpoint Multiplication Connection** 







The Switch Input circuits are functionally isolated from other circuits. It is recommended that the Switch RTN signal be grounded at a signal point. Connect the Switch RTN signal to the XM terminal base (Chassis terminal) or directly to the DIN rail, or ground the signal at the switch or other equipment that is wired to the switch.

# Connecting the 4-20 mA Outputs

The module includes an isolated 4-20 mA per channel output into a maximum load of 300 ohms. The measurements that the 4-20 mA output tracks and the signal levels that correspond to the 4 mA and 20 mA are configurable. Refer to 4-20 mA Output Parameters on page 82 for details.

Wire the 4-20 mA outputs to the terminal base unit as shown in Figure 2.33.

4-20mA Output 1
4-20mA Output 2

11 12

29 30

29 30

29 30

29 30

29 30

29 30

Figure 2.33 4-20 mA Output Connections

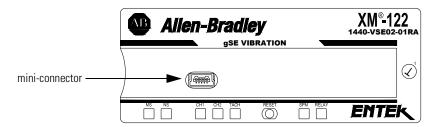




The 4-20 mA outputs are functionally isolated from other circuits. It is recommended that the outputs be grounded at a single point. Connect the 4-20 mA (-) to the XM terminal base (Chassis terminal) or directly to the DIN rail, or ground the signal at the other equipment in the 4-20 mA loop.

# **PC Serial Port Connection**

The XM-122 includes a serial port connection that allows you to connect a PC to it and configure the module's parameters. There are two methods of connecting an external device to the module's serial port.


• Terminal Base Unit - There are three terminals on the terminal base unit you can use for the serial port connection. They are TxD, RxD, and RTN (terminals 7, 8, and 9, respectively). If these three terminals are wired to a DB-9 female connector, then a standard RS-232 serial cable with 9-pin (DB-9) connectors can be used to connect the module to a PC (no null modem is required).

The DB-9 connector should be wired to the terminal block as shown.

| XM-122 Terminal Base Unit<br>(Cat. No. 1440-TB-A) | DB-9 Female Connector      |
|---------------------------------------------------|----------------------------|
| TX Terminal (terminal 7)                          | Pin 2 (RD - receive data)  |
| RX Terminal (terminal 8)                          | Pin 3 (TD - transmit data) |
| RTN Terminal (terminal 9)                         | Pin 5 (SG - signal ground) |

• **Mini-Connector** - The mini-connector is located on the top of the module, as shown below.

Figure 2.34 Mini Connector



A special cable (Cat. No. 1440-SCDB9FXM2) is required for this connection. The connector that inserts into the PC is a DB-9 female connector, and the connector that inserts into the module is a USB Mini-B male connector.





If you connect or disconnect the serial cable with power applied to the module or the serial device on the other end of the cable, an electrical arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding.

# IMPORTANT

If 24 V Common is not referenced to earth ground, we recommend you use an RS-232 isolator, such as Phoenix PSM-ME-RS232/RS232-P (Cat. No. 1440-ISO-232-24), to protect both the XM module and the computer.

# **DeviceNet Connection**

The XM-122 includes a DeviceNet<sup>TM</sup> connection that allows the module to communicate with a Programmable Logic Controller (PLC), Distributed Control System (DCS), or another XM module.

DeviceNet is an open, global, industry-standard communications network designed to provide an interface through a single cable from a programmable controller to a smart device such as the XM-122. As multiple XM modules are interconnected, DeviceNet also serves as the communication bus and protocol that efficiently transfers data between the XM modules.

ConnectToTerminalRed WireDNet V+26 (Optional - see note)White WireCAN High23Bare WireShield (Chassis)10Blue WireCAN Low24

DNet V-

Connect the DeviceNet cable to the terminal base unit as shown.

27

#### **IMPORTANT**

Black Wire

The DeviceNet power circuit through the XM module interconnect, which is rated at only 300 mA, is not intended or designed to power DeviceNet loads. Doing so could damage the module or terminal base.

To preclude this possibility, even unintentionally, it is recommended that DeviceNet V+ be left unconnected.

#### **ATTENTION**



You must ground the DeviceNet shield at only one location. Connecting the DeviceNet shield to terminal 10 will ground the DeviceNet shield at the XM module. If you intend to terminate the shield elsewhere, do not connect the shield to terminal 10.

#### ATTENTION



The DeviceNet network must also be referenced to earth at only one location. Connect DNet V- to earth or chassis at one of the XM modules.

#### **ATTENTION**



The DNet V+ and DNet V- terminals are inputs to the XM module. Do not attempt to pass DeviceNet power through the XM terminal base to other non-XM equipment by connecting to these terminals. Failure to comply may result in damage to the XM terminal base and/or other equipment.

#### **IMPORTANT**

Terminate the DeviceNet network and adhere to the requirements and instructions in the ODVA Planning and Installation Manual - DeviceNet Cable System, which is available on the ODVA web site (http://www.odva.org).

The device is shipped from the factory with the network node address (MAC ID) set to 63. The network node address is software settable. You can use the

XM Serial Configuration Utility or RSNetWorx<sup>TM</sup> for DeviceNet<sup>TM</sup> (Version 3.0 or later) to set the network node address. Refer to the appropriate documentation for details.

**IMPORTANT** 

The baud rate for the XM-122 is set by way of "baud detection" (Autobaud) at power-up.

# **Mounting the Module**

The XM-122 mounts on the XM-940 terminal base unit, Cat. No. 1440-TB-A. We recommend that you mount the module after you have connected the wiring on the terminal base unit.

#### **ATTENTION**



The XM-122 module is compatible only with the XM-940 terminal base unit. The keyswitch on the terminal base unit should be at position 1 for the module.

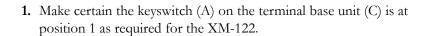
Do not attempt to install XM-122 modules on other terminal base units.

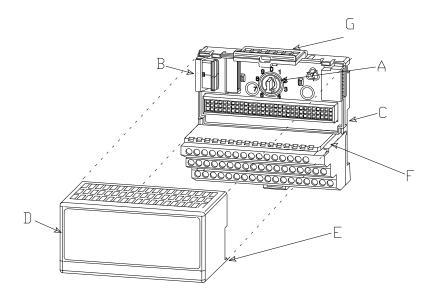
Do not change the position of the keyswitch after wiring the terminal base.

# **ATTENTION**



This module is designed so you can **remove and insert it under power**. However, when you remove or insert the module with power applied, I/O attached to the module can change states due to its input/output signal changing conditions. Take special care when using this feature.


# WARNING




When you insert or remove the module while power is on, an electrical arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding.

#### **IMPORTANT**

Install the overlay slide label to protect serial connector and electronics when the serial port is not in use.





- 2. Make certain the side connector (B) is pushed all the way to the left. You cannot install the module unless the connector is fully extended.
- **3.** Make sure that the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base unit.
- **4.** Position the module (D) with its alignment bar (E) aligned with the groove (F) on the terminal base.
- **5.** Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (G) is locked into the module.
- **6.** Repeat the above steps to install the next module in its terminal base.

# **Module Indicators**

The XM-122 module has seven LED indicators, which include a module status (MS) indicator, a network status (NS) indicator, a status indicator for each channel (CH1, CH2, and TACH), an activation indicator for the Setpoint Multiplier, and a status indicator for the Relay. The LED indicators are located on top of the module.

Figure 2.35 LED Indicators



The following tables describe the states of the LED status indicators.

# Module Status (MS) Indicator

| Color    | State        | Description                                                                          |  |
|----------|--------------|--------------------------------------------------------------------------------------|--|
| No color | Off          | No power applied to the module.                                                      |  |
| Green    | Flashing Red | Module performing power-up self test.                                                |  |
|          | Flashing     | Module operating in Program Mode <sup>1</sup> .                                      |  |
|          | Solid        | Module operating in Run Mode <sup>2</sup> .                                          |  |
| Red      | Flashing     | Application firmware is invalid or not loaded.  Download firmware to the module.     |  |
|          |              | Firmware download is currently in progress.                                          |  |
|          | Solid        | An unrecoverable fault has occurred. The module may need to be repaired or replaced. |  |

- Program Mode Typically this occurs when the module configuration settings are being updated with the XM Serial Configuration Utility. In Program Mode, the module does not perform its normal functions. The signal processing/measurement process is stopped, and the status of the alarms is set to the disarm state to prevent a false alert or danger status.
- 2 Run Mode In Run Mode, the module collects measurement data and monitors each vibration measurement device.

# Network Status (NS) Indicator

| Color    | State    | Description                                                                             |  |  |
|----------|----------|-----------------------------------------------------------------------------------------|--|--|
| No color | Off      | Module is not online.                                                                   |  |  |
|          |          | Module is autobauding.                                                                  |  |  |
|          |          | No power applied to the module, look at Module<br>Status LED.                           |  |  |
| Green    | Flashing | Module is online (DeviceNet) but no connections are currently established. <sup>1</sup> |  |  |
|          | Solid    | Module is online with connections currently established.                                |  |  |
| Red      | Flashing | One or more I/O connections are in the timed-out state                                  |  |  |
|          | Solid    | Failed communications (duplicate MAC ID or Bus-off).                                    |  |  |

<sup>1</sup> Normal condition when the module is not a slave to an XM-440, PLC, or other master device.

# Channel 1, Channel 2, and Tachometer Status Indicators

| Color    | State                       | Description                                                                                                                               |
|----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| No color | Off                         | Normal operation within alarm limits on the channel.                                                                                      |
|          |                             | No power applied to the module, look at Module<br>Status LED.                                                                             |
| Yellow   | Solid                       | An alert level alarm condition exists on the channel (and no transducer fault, tachometer fault, or danger level alarm condition exists). |
|          | Flashing<br>(Tach LED only) | Tachometer fault (no transducer fault) condition exists on the channel.                                                                   |
| Red      | Solid                       | A danger level alarm condition exists on the channel (and no transducer fault or tachometer fault condition exists).                      |
|          | Flashing                    | A transducer fault condition exists on the channel.                                                                                       |

# Setpoint Multiplier Indicator

| Color  | State | Description                           |  |
|--------|-------|---------------------------------------|--|
| Yellow | Off   | Setpoint multiplier is not in effect. |  |
|        | Solid | Setpoint multiplier is in effect.     |  |

# Relay Indicator

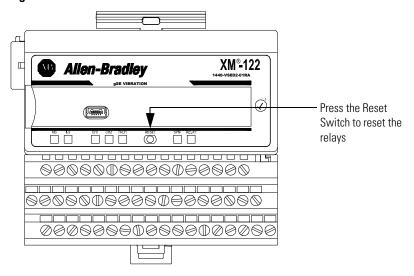
| Color | State | Description                      |
|-------|-------|----------------------------------|
| Red   | Off   | On-board relay is not activated. |
|       | Solid | On-board relay is activated.     |

# **Basic Operations**

# **Powering Up the Module**

The XM-122 performs a self-test at power-up. The self-test includes an LED test and a device test. During the LED test, the indicators will be turned on independently and in sequence for approximately 0.25 seconds.

The device test occurs after the LED test. The Module Status (MS) indicator is used to indicate the status of the device self-test.


| MS Indicator State            | Description                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Flashing Red and Green        | Device self-test is in progress.                                                                                       |
| Solid Green or Flashing Green | Device self-test completed successfully, and the firmware is valid and running.                                        |
| Flashing Red                  | Device self-test completed, the hardware is OK, but the firmware is invalid. Or, the firmware download is in progress. |
| Solid Red                     | Unrecoverable fault, hardware failure, or Boot Loader program may be corrupted.                                        |

Refer to Module Indicators on page 49 for more information about the LED indicators.

# **Manually Resetting Relays**

The XM-122 has an external reset switch located on top of the module, as shown in Figure 2.36.

Figure 2.36 Reset Switch



The switch can be used to reset all latched relays in the module. This includes the relays in the Expansion Relay Module when it is attached to the XM-122.

**IMPORTANT** 

The Reset switch resets the relays only if the input is no longer in alarm or the condition that caused the alarm is no longer present.

# **Configuration Parameters**

This chapter provides a complete listing and description of the XM-122 parameters. The parameters can be viewed and edited using the XM Serial Configuration Utility software and a personal computer. If the module is installed on a DeviceNet network, configuring can also be performed using a network configuration tool such as RSNetWorx (Version 3.0 or later). Refer to your configuration tool documentation for instructions on configuring a device.

| For information about                | See page |
|--------------------------------------|----------|
| XM-122 Measurement Modes             | 56       |
| Channel Transducer Parameters        | 58       |
| Channel Signal Processing Parameters | 60       |
| Measurement Parameters               | 63       |
| gSE Parameters                       | 69       |
| Tachometer Parameters                | 71       |
| Alarm Parameters                     | 74       |
| Relay Parameters                     | 78       |
| 4-20 mA Output Parameters            | 82       |
| Triggered Trend Parameters           | 83       |
| SU/CD Trend Parameters               | 85       |
| I/O Data Parameters                  | 88       |
| Data Parameters                      | 89       |
| Device Mode Parameters               | 93       |

**IMPORTANT** 

The appearance and procedure to configure the parameters may differ in different software.

# XM-122 Measurement Modes

The XM-122 alternates between two measurement modes while it is actively measuring the channel inputs: conventional mode and gSE mode.

The XM-122 operates in conventional vibration mode for a period of time based on the configuration (table 3.A). During conventional mode, the module measures the overall, spectrum, waveform, conventional bands, vectors, Not 1X, and sum harmonics values.

The module then reconfigures itself and transitions to gSE mode for a time period based on the configuration (table 3.B). In gSE mode, the module calculates gSE overall, gSE spectrum and gSE bands. The module then returns to conventional mode, and the cycle repeats.

The most recent measured values are available via the 4-20mA outputs, the XM Serial Configuration Utility, or the network configuration software. During conventional and gSE mode, the module measures speed and transducer bias.

If there is a tachometer fault and the conventional spectrum is configured to be "synchronous," the conventional measurement will timeout and the gSE measurement will take place. When the conventional mode is entered again, the synchronous channel will re-attempt the spectrum/waveform collection.

**IMPORTANT** 

The XM-122 can produce gSE measurements only with an accelerometer. The gSE measurements are only available for the channel when **Eng. Units** is set to "g."

TIP

Only when both **Eng. Units** are **not** set to "g" will the XM-122 remain in conventional mode.

# **Measurement Time**

# Conventional Mode

The conventional mode will produce measurements for a period of time according to the following table:

# **Conventional Mode Time**

| Signal Detection | Sampling Mode | The greater of the two                                |                                              |  |
|------------------|---------------|-------------------------------------------------------|----------------------------------------------|--|
| RMS              | Asynchronous  | (Number of Averages) (Number of Lines) / FMAX         | 5 x <b>Overall Time Constant</b> (seconds)   |  |
| RMS              | Synchronous   | (Number of Averages) (Number of Lines) / (FMAX x 100) | 5 x <b>Overall Time Constant</b> (seconds)   |  |
| True Peak        | Asynchronous  | (Number of Averages) (Number of Lines)/<br>FMAX       | 1 second + 2 / High Pass<br>Corner Frequency |  |
| True Peak        | Synchronous   | (Number of Averages) (Number of Lines) / (FMAX x 100) | 1 second + 2 / High Pass<br>Corner Frequency |  |

# gSE Mode

The gSE mode will produce measurements for a period of time according to the following table:

# gSE Mode Time

| The greater of                                |           |
|-----------------------------------------------|-----------|
| (Number of Averages) (Number of Lines) / FMAX | 4 seconds |

# Channel Transducer Parameters

The channel transducer parameters define the characteristics of the transducers you will be using with the module. Use the parameters to configure the transducer sensitivity, operating range, and power requirements. There are two instances of the channel transducer parameters, one for each channel.

TIP

The Channel LED will flash red when a transducer fault condition exists on the channel even if you are not using the channel. You can keep the Channel LED from flashing red on unused channels by configuring the channel transducer parameters as follows:

- Set the unused channel's **Fault High** and **Fault Low** to greater than zero and less than zero, respectively. For example, set **Fault High** to +18 volts and set **Fault Low** to -18 volts.
- Disable the unused channel's transducer power by clearing the **Enable IEPE Power** check box.

#### **Transducer Parameters**

| Parameter Name Channel Name (XM Serial Configuration Utility only) |            | Description                                                                             | Values/Comments  Maximum 18 characters                                                                                      |                     |
|--------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                    |            | A descriptive name to help identify the channel in the XM Serial Configuration Utility. |                                                                                                                             |                     |
| XM Configuration<br>Utility                                        | EDS File   | Controls whether to provide standard accelerometer (IEPE) power to the transducer.      | XM Configuration<br>Utility                                                                                                 | EDS File            |
| Enable IEPE<br>Power                                               | IEPE Power | Refer to Connecting the Transducer on page 29 for wiring requirements.                  | Check = Enable Clear = Disable                                                                                              | Enabled<br>Disabled |
| Sensitivity                                                        |            | The sensitivity of the transducer in millivolts per <b>Eng. Unit</b> .                  | The sensitivity value is included with the transducer's documentation or it may be imprinted on the side of the transducer. |                     |

# **Transducer Parameters**

| Parameter Name        | Description                | Description                                                                                                                                                                                    |                                                                     |                  | Values/Comments                                                                   |  |
|-----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------|--|
| Eng. Units            | choice controls th         | Defines the native units of the transducer. Your choice controls the list of possible selections available in the <b>Output Data Units</b> parameter. It also affects other module parameters. |                                                                     |                  | Quantity of Measure                                                               |  |
|                       | also affects other         |                                                                                                                                                                                                |                                                                     |                  | Acceleration                                                                      |  |
|                       | measurements or            | Important: The XM-122 can produce gSE measurements only with an accelerometer. The gSE measurements are only available for the channel when Eng. Units is set to "g."                          |                                                                     |                  | Velocity                                                                          |  |
|                       |                            |                                                                                                                                                                                                |                                                                     |                  |                                                                                   |  |
|                       |                            |                                                                                                                                                                                                |                                                                     |                  | Displacement                                                                      |  |
|                       |                            |                                                                                                                                                                                                |                                                                     |                  |                                                                                   |  |
|                       |                            |                                                                                                                                                                                                |                                                                     |                  | Voltage                                                                           |  |
|                       |                            |                                                                                                                                                                                                |                                                                     |                  | pressure                                                                          |  |
|                       |                            |                                                                                                                                                                                                |                                                                     | psi (pound-force |                                                                                   |  |
|                       |                            |                                                                                                                                                                                                |                                                                     |                  |                                                                                   |  |
| Fault Low             |                            | The minimum, or most negative, expected DC bias voltage from the transducer.                                                                                                                   |                                                                     | Volts            |                                                                                   |  |
| Fault High            | The maximum ex transducer. | The maximum expected DC bias voltage from the                                                                                                                                                  |                                                                     |                  | <b>Note:</b> A voltage reading outside this range constitutes a transducer fault. |  |
| DC Bias Time Constant |                            |                                                                                                                                                                                                | r DC bias<br>of for the low pass<br>nstant). The<br>er the settling | Seconds          |                                                                                   |  |
|                       | Time Constant (seconds)    | -3dB Frequency<br>(Hz)                                                                                                                                                                         | Settling Time<br>(seconds)                                          |                  |                                                                                   |  |
|                       | 1                          | 0.159                                                                                                                                                                                          | 2.2                                                                 |                  |                                                                                   |  |
|                       | 2                          | 0.080                                                                                                                                                                                          | 4.4                                                                 |                  |                                                                                   |  |
|                       | 3                          | 0.053                                                                                                                                                                                          | 6.6                                                                 |                  |                                                                                   |  |
|                       | 4                          | 0.040                                                                                                                                                                                          | 8.8                                                                 |                  |                                                                                   |  |
|                       | 5                          | 0.032                                                                                                                                                                                          | 11                                                                  |                  |                                                                                   |  |
|                       | 6                          | 0.027                                                                                                                                                                                          | 13.2                                                                |                  |                                                                                   |  |
|                       | 7                          | 0.023                                                                                                                                                                                          | 15.4                                                                |                  |                                                                                   |  |
|                       | 8                          | 0.020                                                                                                                                                                                          | 17.6                                                                |                  |                                                                                   |  |
|                       | 9                          | 0.018                                                                                                                                                                                          | 19.8                                                                |                  |                                                                                   |  |
|                       | 10                         | 0.016                                                                                                                                                                                          | 22                                                                  |                  |                                                                                   |  |

#### **Transducer Parameters**

| Parameter Name                                      | Description                                                                                                                                                                                           | Values/Comments |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Full Scale                                          | The maximum signal level expected to be processed by the channel. This value is used to determine the programmable gain settings across each stage of the channel's analog signal processing circuit. |                 |  |
| Autoscale (XM Serial<br>Configuration Utility only) |                                                                                                                                                                                                       |                 |  |

# **Channel Signal Processing Parameters**

The channel signal processing parameters determine the signal processing that will be performed on the input signals. Use these parameters to select the output data units, the low cutoff frequency, full scale settings, and the relationship of the signal to the tachometer signal for each channel.

In addition, the signal processing parameters affect the data units of the measurement values, the sampling mode of the spectrum/waveform data, and any spectral derived measurement. There are two instances of the signal processing parameters, one for each channel.

# **Channel Signal Processing Parameters**

| Parameter Name                             | Description                                                                                                                                                                                                                                                                                                  | Values/Comments                                                                                                                                                                                                                                                                   |                             |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Output Data Unit                           | The data units of the measured values.                                                                                                                                                                                                                                                                       | The available options depend on the <b>Eng. Units</b> selection. See page 58.                                                                                                                                                                                                     |                             |
|                                            |                                                                                                                                                                                                                                                                                                              | Eng. Units                                                                                                                                                                                                                                                                        | Output Data<br>Unit Options |
|                                            |                                                                                                                                                                                                                                                                                                              | g                                                                                                                                                                                                                                                                                 | g                           |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | ips                         |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | mil                         |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | mm/sec                      |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | um                          |
|                                            |                                                                                                                                                                                                                                                                                                              | ips or mm/sec                                                                                                                                                                                                                                                                     | ips                         |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | mil                         |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | mm/sec                      |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | um                          |
|                                            |                                                                                                                                                                                                                                                                                                              | mils or um                                                                                                                                                                                                                                                                        | mils                        |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | um                          |
|                                            |                                                                                                                                                                                                                                                                                                              | Volt                                                                                                                                                                                                                                                                              | volt                        |
|                                            |                                                                                                                                                                                                                                                                                                              | Pa or psi                                                                                                                                                                                                                                                                         | Pa                          |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | psi                         |
| Very Low HPF Frequency (EDS<br>File only)  | Shows the corner frequency for the Very Low high pass filter option.                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                             |
| Low HPF Frequency (EDS File only)          | Shows the corner frequency for the Low high pass filter option.                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                             |
| Medium HPF Frequency (EDS File only)       | Shows the corner frequency for the Medium high pass filter option.                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |                             |
| High HPF Frequency (EDS File only)         | Shows the corner frequency for the High high pass filter option.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                             |
| Very High HPF Frequency (EDS<br>File only) | Shows the corner frequency for the Very High high pass filter option.                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |                             |
| High Pass Filter                           | Sets the high pass filter to apply to the measurements. The high pass filter is useful in removing low frequency signal components that would dominate the signal. The high pass filter attenuates all frequencies below a defined frequency. It allows, or passes, frequencies above the defined frequency. | Important: Select the Bypass option when you want a more accurate representation of dynamic signals at low frequencies. This option reduces the distortion of the waveform at low frequencies and reduces attenuation at lower frequencies.  Note: The lowest frequency high pass |                             |
|                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   | able for integrated         |

# **Channel Signal Processing Parameters**

| Parameter Name      | Description                                                                                                                                     | Description                                                                                                                                                                                                      |                                                                                           |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Sampling Mode       | Sets the sampling mode.  The sampling mode determines whether synchronized with the tachometer signal several effects on the resulting measure. | Options: Asynchronous Synchronous  Note: Synchronous sampling requires a tachometer signal.                                                                                                                      |                                                                                           |  |
|                     | Asynchronous Sampling                                                                                                                           | Asynchronous Sampling Synchrono                                                                                                                                                                                  |                                                                                           |  |
|                     | The waveform measurement is time-based.                                                                                                         | The waveform measurement is position-based.                                                                                                                                                                      |                                                                                           |  |
|                     | The spectrum measurement is frequency-based.                                                                                                    | order-based<br><b>Lines</b> must                                                                                                                                                                                 | m measurement is I and the <b>Number of</b> be evenly divisible by no remainder).         |  |
|                     | When averaging, spectrums are averaged, not waveforms. This has the affect of reducing noise in the spectrum data.                              | averaged, not waveforms. This has the affect of reducing noise in the calculated from averaged waveforms.                                                                                                        |                                                                                           |  |
|                     | The Band <b>Minimum</b> and <b>Maximum Frequency</b> must be specified in Hz (or CPM).                                                          |                                                                                                                                                                                                                  | and <b>Minimum</b> and <b>Maximum</b><br><b>ency</b> can be specified in Hz<br>or Orders. |  |
|                     |                                                                                                                                                 | The tachometer speed must meet the following criteria, otherwise a tachometer fault will be indicated.  10 Hz < Tach Speed x Gear Ratio* x FMAX < 5000 Hz  *Gear Ratio = External Gear Teeth Internal Gear Teeth |                                                                                           |  |
|                     |                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                           |  |
|                     |                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                           |  |
| Internal Gear Teeth | The number of teeth on the buried shaft                                                                                                         | The number of teeth on the buried shaft gear. <b>Note:</b> These parameters apply only                                                                                                                           |                                                                                           |  |
| External Gear Teeth | The number of teeth on the external sha                                                                                                         | The number of teeth on the external shaft gear. synchronous sampling.                                                                                                                                            |                                                                                           |  |

## **Measurement Parameters**

### **Overall Measurement Parameters**

There are two instances of the overall measurement parameters, one for each channel. Use these parameters to configure the measurement type and the filtering performed for each overall measurement.

#### **Overall Measurement Parameters**

| Parameter Name        | Description                                                                                                                                                                                                                                                                                                                                                                                                        | Values/Comments                                                                                                                                                                                                                                                                               |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Signal Detection      | The measurement (or calculation) performed on the input signal to produce the <b>Overall Value</b> . See Data Parameters on page 89.  • RMS - The Overall Value is the root mean squared (RMS) signal level of the input signal.                                                                                                                                                                                   | Options: RMS Calculated Peak Calculated Peak-to-Peak True Peak True Peak-to-Peak                                                                                                                                                                                                              |  |
|                       | Calculated Peak - The Overall Value is the measured RMS value multiplied by the square root of two (1.4142).                                                                                                                                                                                                                                                                                                       | Important: When changing the signal detection, make certain to check the Overall Time Constant value.                                                                                                                                                                                         |  |
|                       | Calculated Peak-to-Peak - The Overall Value is the measured RMS value multiplied by two times the square root of two (2.8284).     True Peak - The Overall Value is the output of a peak detector applied to the input signal.     True Peak-to-Peak - The Overall Value is the output of a peak-to-peak detector applied to the input signal.                                                                     |                                                                                                                                                                                                                                                                                               |  |
| Overall Time Constant | For <b>RMS</b> measurements, the Overall Time Constant parameter sets the 3-DB bandwidth for the digital filtering used to calculate the <b>Overall Value</b> . The 3-dB bandwidth is roughly equal to 1 / $(2\pi \times \text{Overall Time Constant})$ . The greater the Overall Time Constant, the slower the response of the measured Overall Value to change in the input signal.                              | Enter a value greater than 0 (zero).  Recommended Value: The recommended values are appropriate for a typical 50/60 Hz machine, and may need to be adjusted depending on the application.                                                                                                     |  |
|                       | For example, an Overall Time Constant of 0.1 seconds may be appropriate for monitoring the Overall Value of an input signal with a fundamental frequency of 10 Hz and above. Although, the response to a step change in input will take approximately 2.2 times the Overall Time Constant to settle. Therefore, for an Overall Time Constant of 0.1 seconds, the settling time will be approximately 0.22 seconds. | <ul> <li>For True Peak or True         Peak-to-Peak measurements, set         the Overall Time Constant to 1.5.</li> <li>For RMS, Calculated Peak, or         Calculated Peak-to-Peak         measurements, set the Overall Time         Constant to one of the         following:</li> </ul> |  |
|                       | For <b>True Peak</b> measurements, the Overall Time                                                                                                                                                                                                                                                                                                                                                                | High Pass Overall Time<br>Filter Constant                                                                                                                                                                                                                                                     |  |
|                       | Constant sets the decay rate of the peak detection meter. The greater the Overall Time Constant, the                                                                                                                                                                                                                                                                                                               | 1 Hz 0.16                                                                                                                                                                                                                                                                                     |  |
|                       | slower the Peak is decayed.                                                                                                                                                                                                                                                                                                                                                                                        | 5 Hz or above 0.045                                                                                                                                                                                                                                                                           |  |

#### **Overall Measurement Parameters**

| Parameter Name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                | Values/Comments                                                                                                                                                                                                                                                                             |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overall Damping Factor | This parameter is used in conjunction with the <b>Overall Time Constant</b> to vary the characteristics of the response of the digital filter used in calculating the <b>Overall Value</b> .                                                                                                                                                                                                                                                               | Enter a value from 0.707 to 1.0.                                                                                                                                                                                                                                                            |
|                        | An Overall Value for a measurement with a damping factor near 1.0 (critical damping) will slowly rise or fall for the full settling time specified by the <b>Overall Time Constant</b> before reaching the final value. An Overall Value for a measurement with a damping factor near 0.707 will rise or fall quickly and may "overshoot" (measure a value greater or less than the final value) before reaching the final value for a given input signal. |                                                                                                                                                                                                                                                                                             |
| Overall Filter         | The filter to be applied to the overall measurement to produce the <b>Overall Value</b> . See Data Parameters on page 89.                                                                                                                                                                                                                                                                                                                                  | Options: None<br>Low Pass Filter                                                                                                                                                                                                                                                            |
| Low Pass Filter        | Sets the frequency above which the input signal will be significantly attenuated.                                                                                                                                                                                                                                                                                                                                                                          | Enter a value from 200 to 20,000 Hz.  Note: This value is used only when the Overall Filter is set to "Low Pass Filter." However, the value is ignored when double integration is performed on the signal (Eng. Units is set to "g" and Output Data Units is set to either "mils" or "µm"). |

### **Sum Harmonics Measurement Parameter**

There are two instances of the sum harmonics parameter, one for each channel. .



The sum harmonics measurement requires the tachometer to be enabled (**Pulses Per Revolution** is set to 1 or more), and a tachometer signal must be present.

#### **Sum Harmonics Measurement Parameters**

| Parameter Name              |                                 | Description                                                                                                                                         | Values/Comments                                                                                                                             |  |
|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| XM Configuration<br>Utility | EDS File                        | Sets the starting order for the Sum Harmonics measurement. The amplitudes of all harmonics from the specified harmonic through FMAX are included in | Select a value from 1 to 5. <b>Note:</b> This value should be less than                                                                     |  |
| Order of Sum<br>Harmonics   | Sum<br>Harmonics<br>Start Order | the sum.                                                                                                                                            | or equal to the <b>FMAX</b> in orders. The sum harmonics start order is automatically rounded down if this value is above the <b>FMAX</b> . |  |

## **Spectrum/Waveform Parameters**

There are two instances of the spectrum/waveform parameters, one for each channel. Use these parameters to set up the conventional spectrum and waveform measurements.

TIP

Use the gSE Parameters to configure the gSE spectrum measurements.

#### **Spectrum/Waveform Parameters**

| Parameter Name  | Descript               | ion                                                                                                                                                            |                                 |                                  |        | Values/Comments                                                                                                                 |                                                                            |
|-----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| FMAX            | spectrum  Note: The    | Sets the maximum frequency or order for the spectrum measurement.  Note: The Sampling Mode parameter determines whether the measurement is frequency or order. |                                 |                                  |        |                                                                                                                                 | any FMAX. The<br>ically use the next<br>ximum frequency.<br>frequencies in |
|                 |                        |                                                                                                                                                                |                                 |                                  |        | Single integrated/<br>Non-integrated<br>10 to 5000<br>6250<br>7500<br>8000<br>9375<br>10000<br>12500<br>15000<br>18750<br>20000 | Double<br>Integrated<br>10 to 5000<br>6250<br>9375<br>18750                |
| Number of Lines | measuren<br>order resc | The number of lines or bins in the spectrum measurement. This determines the frequency or order resolution of the spectrum measurement.                        |                                 |                                  |        |                                                                                                                                 |                                                                            |
|                 | See exam               | ous," the<br>isible by<br>ple table                                                                                                                            | Number<br>the FMAX<br>below. No | of Lines<br>V value (rote that t |        | f                                                                                                                               |                                                                            |
|                 |                        |                                                                                                                                                                | Number                          | of Lines                         |        |                                                                                                                                 |                                                                            |
|                 | FMAX                   | 100                                                                                                                                                            | 200                             | 400                              | 800    |                                                                                                                                 |                                                                            |
|                 | 4                      | √                                                                                                                                                              | $\sqrt{}$                       | √                                | V      |                                                                                                                                 |                                                                            |
|                 | 5                      | $\sqrt{}$                                                                                                                                                      | √                               | √                                | V      |                                                                                                                                 |                                                                            |
|                 | 8                      |                                                                                                                                                                | √                               | √                                | V      |                                                                                                                                 |                                                                            |
|                 | 10                     | $\sqrt{}$                                                                                                                                                      | √                               | √                                | V      |                                                                                                                                 |                                                                            |
|                 | 16                     | 1                                                                                                                                                              | 1                               | √<br>/                           | √<br>  |                                                                                                                                 |                                                                            |
|                 | 20                     | √<br>√                                                                                                                                                         | √<br>√                          | √<br>√                           | √<br>√ |                                                                                                                                 |                                                                            |
|                 | <u>25</u><br>32        | 1                                                                                                                                                              | N                               | ٧                                | √<br>√ |                                                                                                                                 |                                                                            |
|                 | 40                     |                                                                                                                                                                | <b>√</b>                        | <b>√</b>                         | V      |                                                                                                                                 |                                                                            |
|                 | 40                     |                                                                                                                                                                | V                               | ٧                                |        |                                                                                                                                 |                                                                            |

#### **Spectrum/Waveform Parameters**

| Parameter Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description                                                                              | Values/Comments                                                                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Period (XM Serial Configuration Utility only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Displays the total period of the waveform measurement.                                   | Seconds (asynchronous sampling)<br>Cycles (synchronous sampling)                                                                                  |  |
| Number of Points (XM Serial<br>Configuration Utility only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Displays the number of samples in the waveform measurement.                              | Spectral Lines         Waveform Samples           100         256           200         512           400         1024           800         2048 |  |
| Type of window to be applied to the waveform measurement prior to computing the spectrum.  • Hanning - Most often used in predictive maintenance. Gives fair peak amplitude accuracy fair peak frequency accuracy. Useful for random type data where energy is at all frequencies.  • Rectangular - Also known as Uniform. Gives por peak amplitude accuracy, good peak frequency accuracy. Useful for impulsive or transient data.  • Hamming - Gives fair peak amplitude accuracy, fair peak frequency accuracy. Similar to Hanning.  • Flat Top - Also called Sinusoidal window. Gives good peak amplitude accuracy, poor peak frequency accuracy for data with discrete frequency components.  • Kaiser Bessel - Gives fair peak amplitude accuracy, fair peak frequency accuracy. |                                                                                          | Options: Rectangular Hamming Hanning Flat Top Kaiser Bessel                                                                                       |  |
| Number of Averages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sets the number of individual data sets to be incorporated into the average calculation. | 1 = no averaging                                                                                                                                  |  |

## **Band Measurement Parameters**

There are eight instances of the band measurement parameters, four for each channel. Use these parameters to configure the bandwidth for each band measurement.

#### **Band Measurement Parameters**

| Parameter Name  |          | Description                                                        | Values/Comments                                                                                                                                                                 |  |
|-----------------|----------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                 |          | Sets the spectrum measurement to use when calculating band values. | Options: Conventional Spectrum<br>gSE Spectrum                                                                                                                                  |  |
| Spectrum Option | Spectrum |                                                                    | <b>Note:</b> The XM-122 can produce gSE measurements only with an accelerometer. The <b>Eng. Units</b> must be set to "g" for the channel to use the gSE Spectrum. See page 58. |  |

#### **Band Measurement Parameters**

| Parameter Name                  | Description                                                                                                                                                                                                                                                                                                                                                           | Values/Comments                                                                                                                                     |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement                     | The measurement (or calculation) performed to produce the <b>Band Value</b> . See Data Parameters on page 89.                                                                                                                                                                                                                                                         | Options: Band Overall<br>Max Peak in Band                                                                                                           |
|                                 | Band Overall - The Band Value is the square root of the sum of the squares (RSS) of the amplitude values for the bins that make up the band. If the band includes all of the spectrum bins then the Band Value is equivalent to the digital or RSS overall value.      Max Peak in Band - The Band Value is equal to the maximum bin amplitude found within the band. |                                                                                                                                                     |
| Minimum Frequency               | The spectrum bin with the least frequency to be included in the band measurement.                                                                                                                                                                                                                                                                                     | Options (XM Serial Configuration<br>Utility): Hz<br>CPM<br>Orders                                                                                   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                       | Note: Order-based bands are supported only when Spectrum Option is set to "Conventional Spectrum.'                                                  |
| Maximum Frequency               | The spectrum bin with the greatest frequency to be included in the band measurement.                                                                                                                                                                                                                                                                                  | Enter a value greater than or equal to <b>Minimum Frequency</b> .                                                                                   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                       | <b>Note</b> : This value must be less than or equal to <b>FMAX</b> . For conventional measurements, see page 65. For gSE measurements, see page 70. |
| Frequency Units (EDS File only) | Defines the units of the <b>Minimum</b> and <b>Maximum Frequency</b> values.                                                                                                                                                                                                                                                                                          | Options: Hz<br>Orders                                                                                                                               |
|                                 |                                                                                                                                                                                                                                                                                                                                                                       | Note: Order-based bands are supported only when Spectrum Option is set to "Conventional Spectrum."                                                  |

TIP

The Frequency ranges for each band may overlap. For example, Band 1 **Minimum Frequency** is 500 Hz and **Maximum Frequency** is 1500 Hz, and Band 2 **Minimum Frequency** is 1000 Hz and **Maximum Frequency** is 3000 Hz.

#### **IMPORTANT**

For bands specified in Hz or CPM on an orders-based spectrum, the **Band Measurement** value will be zero when the Band **Minimum Frequency** and **Maximum Frequency** fall completely outside of the frequencies represented in the spectrum. If any of the band falls within the spectrum, only that portion will contribute to the Band value.

#### Example:

Minimum Frequency = 150 Hz Maximum Frequency = 250 Hz FMAX = 10 Orders

The following table shows the actual Band Minimum and Maximum Frequencies given different input speeds for this example. Note that when the speed is 10 Hz, the Band Minimum and Maximum Frequencies fall outside the range of the FMAX, so the Band value will be zero. When the speed is 20 Hz, the band will be calculated from 150 to 200 Hz.

| Speed<br>(Hz) | Max Frequency Represented in Spectrum (Hz) | Band Min<br>(Hz) | Band Max<br>(Hz) |
|---------------|--------------------------------------------|------------------|------------------|
| 40            | 400                                        | 150              | 250              |
| 30            | 300                                        | 150              | 250              |
| 20            | 200                                        | 150              | 200              |
| 10            | 100                                        | n/a              | n/a              |

## **Speed Measurement Parameter**

Use the speed measurement parameter to configure the filtering performed on the speed measurement.

#### **Speed Measurement Parameter**

| Parameter Name                         | Description                     |                        | Values/Comments                 |  |
|----------------------------------------|---------------------------------|------------------------|---------------------------------|--|
| Exponential Averaging Time<br>Constant |                                 |                        |                                 |  |
|                                        | Time Constant<br>(milliseconds) | -3dB Frequency<br>(Hz) | Settling Time<br>(milliseconds) |  |
|                                        | 5                               | 31.8310                | 11                              |  |
|                                        | 10                              | 15.9155                | 22                              |  |
|                                        | 20                              | 7.9577                 | 44                              |  |
|                                        | 50                              | 3.1831                 | 110                             |  |
|                                        | 100                             | 1.5915                 | 220                             |  |
|                                        | 1200                            | 0.1326                 | 2640                            |  |

## **gSE Parameters**

Use the gSE parameters to configure the gSE signal processing and gSE spectrum measurements for channel 1 and channel 2. The gSE parameters are configured independently of the (conventional) channel signal processing and spectrum parameters. There are two instances of the gSE parameters, one for each channel.



The XM-122 can produce gSE measurements only with an accelerometer. The gSE measurements are only available for the channel when **Eng. Units** is set to "g." Refer to Channel Transducer Parameters on page 58.

## **gSE Signal Processing Parameters**

### **gSE Signal Processing Parameters**

| Parameter Name                                                                                                                                                                                                                                                                                                  | Description                                                                                                                                                                                                                | Values/Comments                                                                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| gSE Full Scale                                                                                                                                                                                                                                                                                                  | The maximum signal level expected to be processed by the channel for gSE measurements. This value is used to determine the programmable gain settings across each stage of the channel's analog signal processing circuit. | Important: Most gSE applications are well matched to the default gSE Full Scale setting of 10 volts. However, if gSE levels in excess of 5 gSE are observed or anticipated, then we recommended you increase the Full Scale setting to 50 Volts to better match the dynamic range for the application. |  |
| Output Data Unit (XM Serial Configuration Utility only)                                                                                                                                                                                                                                                         | The data units of the measured value.                                                                                                                                                                                      | This value is always set to gSE.                                                                                                                                                                                                                                                                       |  |
| Sets the high pass filter to apply to the gSE measurement. The high pass filter is useful in removing low frequency signal components that would dominate the signal. The high pass filter attenuates all frequencies below a defined frequency. It allows, or passes, frequencies above the defined frequency. |                                                                                                                                                                                                                            | Options: 200 Hz<br>500 Hz<br>1000 Hz<br>2000 Hz<br>5000 Hz                                                                                                                                                                                                                                             |  |

## **gSE Spectrum Parameters**

### **gSE Spectrum Parameters**

| Parameter Name  | Description                                                                                                                            | Values/Comments                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| FMAX            | Sets the maximum frequency for the gSE spectrum measurement.                                                                           | 10 to 5000 Hz                     |
| Number of Lines | The number of lines or bins in the gSE spectrum measurement. This determines the frequency resolution of the gSE spectrum measurement. | Options: 100<br>200<br>400<br>800 |

#### gSE Spectrum Parameters

| Parameter Name     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Values/Comments                                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Window Type        | Type of window to be applied to the measurement prior to computing the gSE spectrum.  • Hanning - Most often used in predictive maintenance. Gives fair peak amplitude accuracy, fair peak frequency accuracy. Useful for random type data where energy is at all frequencies.  • Rectangular - Also known as Uniform. Gives poor peak amplitude accuracy, good peak frequency accuracy. Useful for impulsive or transient data.  • Hamming - Gives fair peak amplitude accuracy, fair peak frequency accuracy. Similar to Hanning.  • Flat Top - Also called Sinusoidal window. Gives good peak amplitude accuracy, poor peak frequency accuracy for data with discrete frequency components.  • Kaiser Bessel - Gives fair peak amplitude accuracy, fair peak frequency accuracy. | Options: Rectangular Hamming Hanning Flat Top Kaiser Bessel |
| Number of Averages | Sets the number of individual data sets to be incorporated into the average calculation for the gSE spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 = no averaging                                            |

## **Tachometer Parameters**

The tachometer parameters define the characteristics of the tachometer and determine the signal processing that will be performed on the tachometer signal.

## **Tachometer Transducer Parameters**

#### **Tachometer Transducer Parameters**

| Parameter Name                                         | Description                                                                                         | Values/Comments       |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|
| Tachometer Name (XM Serial Configuration Utility only) | A descriptive name to help identify the tachometer in the XM Serial Configuration Utility software. | Maximum 18 characters |

#### **Tachometer Transducer Parameters**

| Parameter Name        | Description                                                             |                                                                                        |                                                                                   | Values/Comments |
|-----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|
| Fault Low             | The minimum, or most negative, expected DC voltage from the transducer. |                                                                                        | Volts                                                                             |                 |
| Fault High            | The maximum ex transducer.                                              | pected DC voltage                                                                      | <b>Note:</b> A voltage reading outside this range constitutes a transducer fault. |                 |
| DC Bias Time Constant | (low pass filtering measurement. Th                                     | t used for exponeng) of the transduce<br>e corner frequency<br>DC Bias Time Co<br>low. | r DC bias<br>for the low pass                                                     | Seconds         |
|                       | Time Constant (seconds)                                                 | -3dB Frequency<br>(Hz)                                                                 | Settling Time<br>(seconds)                                                        |                 |
|                       | 1                                                                       | 0.159                                                                                  | 2.2                                                                               |                 |
|                       | 2                                                                       | 0.080                                                                                  | 4.4                                                                               |                 |
|                       | 3                                                                       | 0.053                                                                                  | 6.6                                                                               |                 |
|                       | 4                                                                       | 0.040                                                                                  | 8.8                                                                               |                 |
|                       | 5                                                                       | 0.032                                                                                  | 11                                                                                |                 |
|                       | 6                                                                       | 0.027                                                                                  | 13.2                                                                              |                 |
|                       | 7                                                                       | 0.023                                                                                  | 15.4                                                                              |                 |
|                       | 8                                                                       | 0.020                                                                                  | 17.6                                                                              |                 |
|                       | 9                                                                       | 0.018                                                                                  | 19.8                                                                              |                 |
|                       | 10                                                                      | 0.016                                                                                  | 22                                                                                |                 |

## **Tachometer Signal Processing Parameters**



The tachometer is required for synchronous sampling and the speed measurement.

If you are not using the tachometer channel, set the **Pulses Per Revolution** to zero. This will disable the tachometer measurement, and prevent the module from indicating a tachometer fault.

#### **Tachometer Signal Processing Parameters**

| Parameter Name        | Description                                                                                                                                                                                                                                          | Values/Comments                                                                               |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Pulses Per Revolution | The number of tachometer signal pulses per revolution of the shaft (number of gear teeth). This setting is useful if a proximity probe located over a gear or shaft with a multi-toothed speed sensing surface is used to generate the input signal. | Enter zero if you are not using the tachometer channel to disable the tachometer measurement. |

## **Tachometer Signal Processing Parameters**

| Parameter Name                    |         | Description                                                                                                                                                                                                                                                                                                                                                                                         | Values/Comments                                                                                                                                 |                |
|-----------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Fault Time-Out                    |         | The number of seconds the module should wait after the last valid tach pulse before it indicates a tachometer fault.                                                                                                                                                                                                                                                                                | Enter a value from 1 to 64 seconds.                                                                                                             |                |
| XM Configuration EDS File Utility |         | Sets the trigger mode. In Auto Trigger mode, the minimum signal amplitude for triggering is 2 volts peak-to-peak and minimum frequency is 6 CPM (0.1                                                                                                                                                                                                                                                | XM Configuration<br>Utility                                                                                                                     | EDS File       |
| Auto Trigger                      | Trigger | Hz).                                                                                                                                                                                                                                                                                                                                                                                                | Check = Auto Mode                                                                                                                               | Auto           |
|                                   | Mode    | In Manual Trigger mode, the value entered in <b>Trigger Threshold</b> is used as the trigger point. Minimum signal amplitude for triggering is 500                                                                                                                                                                                                                                                  | Clear = Manual<br>Mode                                                                                                                          | Manual         |
|                                   |         | millivolts peak-to-peak and minimum frequency is 1 CPM.                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |                |
| Trigger Hysteresis                |         | The amount of hysteresis around the trigger threshold. In Auto Trigger mode, the value entered is a percentage of the peak-to-peak input signal. This value can range from 0 to 50%.  In Manual Trigger mode, the value entered is a voltage level. The hysteresis voltage is added to or subtracted from the threshold voltage to determine the hysteresis range. The minimum value is 0.12 volts. | % in Auto Trigger mode Volt in Manual Trigger mode  Enter a value from +16 to -16 volts dc.  Note: This value is not used in Auto Trigger mode. |                |
| Trigger Threshold                 |         | The signal level to be used as the trigger value when in Manual Trigger mode.                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                 |                |
| Trigger Slope                     |         | The input signal slope to be used as the trigger value when in Manual Trigger mode.                                                                                                                                                                                                                                                                                                                 | Options: Positive<br>Negative                                                                                                                   |                |
|                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Note:</b> This value is no Trigger mode.                                                                                                     | t used in Auto |

The Alarm parameters control the operation of the alarms (alert and danger level) and provide alarm status. The XM-122 provides 16 alarms. The alarms are not restricted to a channel, but the maximum number of alarms that can be assigned to any one measurement is eight. Use the parameters to configure which measurement the alarm is associated with, as well as the behavior of the alarm.

| Parameter Name                                          | Description                                                                                                                                                                                                                                                                                                           | Values/Comments  Select a number from 1 to 16.  Maximum 18 characters                                                                                                                                                                  |          |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Number (1-16) (XM Serial<br>Configuration Utility only) | Sets the alarm to be configured in the XM Serial Configuration Utility. There are 16 alarms in the XM-122. The alarms are not restricted to a channel.                                                                                                                                                                |                                                                                                                                                                                                                                        |          |
| Name (XM Serial Configuration<br>Utility only)          | A descriptive name to identify the alarm in the XM Serial Configuration Utility.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |          |
| Enable                                                  | Enable/disable the selected alarm.  Note: The Alarm Status is set to "Disarm" when the                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                      | EDS File |
|                                                         | alarm is disabled.                                                                                                                                                                                                                                                                                                    | Check to Enable                                                                                                                                                                                                                        | Enabled  |
|                                                         |                                                                                                                                                                                                                                                                                                                       | Clear to Disable                                                                                                                                                                                                                       | Disabled |
| Measurement                                             | The type of measurement and the channel that is associated with the alarm.  Note: A maximum of eight alarms can be associated with any one measurement.                                                                                                                                                               | Options: Ch1 / Ch2 Overall Ch1 / Ch2 Gap Ch1 / Ch2 Band 1–4 Speed Ch1 / Ch2 1X Mag Ch1 / Ch2 2X Mag Ch1 / Ch2 3X Mag Ch1 / Ch2 Not 1X Ch1 / Ch2 Sum Harmonics Ch1 / Ch2 1X Phase Ch1 / Ch2 2X Phase Acceleration Ch1 / Ch2 gSE Overall |          |
| Alarm Type (EDS File only)                              | Controls whether the alarm is used as a magnitude or vector (phase) alarm.  • Magnitude Alarms - The measurement value is compared against the threshold values on a linear scale.  • Vector (Phase) Alarms - The measurement value is compared against the threshold values on a circular scale of 0 to 360 degrees. | Options: Magnitude<br>Vector                                                                                                                                                                                                           |          |

| Parameter Name | Description                                                                                                                                                                                                                       | Values/Comments                                                                                      |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Condition      | Controls when the alarm should trigger.                                                                                                                                                                                           | Options: Greater Than<br>Less Than                                                                   |
|                | Greater than - Triggers the alarm when the measurement value is greater than or equal to the Alert and Danger Threshold values.                                                                                                   | Inside Range<br>Outside Range                                                                        |
|                | The Danger Threshold value must be greater than or equal to the Alert Threshold value for the trigger to occur.                                                                                                                   | <b>Note</b> : This parameter is not applicable for a vector (phase) alarm type or phase measurement. |
|                | <ul> <li>Less than - Triggers the alarm when the<br/>measurement value is less than or equal to the<br/>Alert and Danger Threshold values.</li> </ul>                                                                             |                                                                                                      |
|                | The Danger Threshold value must be less than or equal to the Alert Threshold value for the trigger to occur.                                                                                                                      |                                                                                                      |
|                | • Inside range - Triggers the alarm when the measurement value is equal to or inside the range of the Alert and Danger Threshold values.                                                                                          |                                                                                                      |
|                | The Danger Threshold (High) value must be less than or equal to the Alert Threshold (High) value AND the Danger Threshold (Low) value must be greater than or equal to the Alert Threshold (Low) value for the trigger to occur.  |                                                                                                      |
|                | Outside range - Triggers the alarm when the<br>measurement value is equal to or outside the<br>range of the Alert and Danger Threshold values.                                                                                    |                                                                                                      |
|                | The Danger Threshold (High) value must be greater than or equal to the Alert Threshold (High) value, AND the Danger Threshold (Low) value must be less than or equal to the Alert Threshold (Low) value for the trigger to occur. |                                                                                                      |

| Parameter Name          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Values/Comments                                                                                                                                                                                                                                                                          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alert Threshold (High)  | The threshold value for the alert (alarm) condition.  Note: This parameter is the greater threshold value when Condition is set to "Inside Range" or "Outside Range," the measurement is a phase measurement (Configuration Utility), or the alarm type is a vector alarm (EDS file).                                                                                                                                                                                                | Same measurement unit as <b>Output Data Unit</b> selection for the specified channel except when measurement/alarm type is phase (vector).  Phase Measurements/Vector Alarm                                                                                                              |
| Danger Threshold (High) | The threshold value for the danger (shutdown) condition.  Note: This parameter is the greater threshold value when Condition is set to "Inside Range" or "Outside Range," the measurement is a phase measurement (Configuration Utility), or the alarm type is a vector alarm.                                                                                                                                                                                                       | <ul> <li>Type Requirements:</li> <li>The Alert Low, Danger Low, Alert High, and Danger High must define contiguous sections within the set of possible phase values (0 to 360 degrees).</li> <li>If you were to plot the thresholds on a clock face (illustration below) with</li> </ul> |
| Alert Threshold (Low)   | The lesser threshold value for the alert (alarm) condition.  Note: This parameter is not used when Condition is set to "Greater Than" or "Less Than."                                                                                                                                                                                                                                                                                                                                | phase increasing in the clockwise direction, then  • Alert Low must be clockwise from or equal to Danger Low.  • Alert High must be clockwise                                                                                                                                            |
| Danger Threshold (Low)  | The lesser threshold value for the danger (shutdown) condition.  Note: This parameter is not used when Condition is set to "Greater Than" or "Less Than."                                                                                                                                                                                                                                                                                                                            | from Alert Low.  • Danger High must be clockwise from or equal to Alert High.  Alert High Phase increases clockwise  Danger High                                                                                                                                                         |
| Hysteresis              | The amount that the measured value must fall (below the threshold) before the alarm condition is cleared. For example, Alert Threshold = 120 and Hysteresis = 2. The alarm (alert) activates when the measured value is 120 and will not clear until the measured value is 118.  Note: The Alert and Danger Thresholds use the same hysteresis value.  Note: For the Outside Range condition, the hysteresis value must be less than Alert Threshold (High) — Alert Threshold (Low). | Same measurement unit as <b>Output Data Unit</b> selection for the specified channel.                                                                                                                                                                                                    |
| Startup Period          | The length of time that the <b>Threshold Multiplier</b> is applied to the thresholds. The startup period begins when the setpoint multiplier switch is reopened (push button disengaged or toggle switch flipped to off).                                                                                                                                                                                                                                                            | Enter a value from 0 to 1092 minutes, adjustable in increments of 0.1 minutes.                                                                                                                                                                                                           |

| Parameter Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Values/Comments                                                                                                                     |                       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Threshold Multiplier     | The action to take when the setpoint multiplier switch is closed (push button engaged or toggle switch flipped to on) and during the startup period once the switch is reopened. The module applies the multiplier to the alarm thresholds during this time to avoid false alarms at resonance frequencies.  Note: The multiplication may have the opposite of the intended effect under certain circumstances. For example, if the Condition is set to "Less Than" and the thresholds are positive, then multiplication of the threshold values increases the likelihood of the measured value being within the alarm range. Therefore, you may want to set Threshold Multiplier to zero to disable the alarm during the startup period. | Enter a floating point value in the range of 0 to 10.  Enter 0 (zero) to disabled the alarm during the startup period.              |                       |
| Inhibit Tachometer Fault | Controls whether to inhibit the tachometer fault during the startup period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XM Configuration Utility                                                                                                            | EDS File              |
|                          | During startup, the machine may be turning very slowly and cause the XM module to detect a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check means inhibit tachometer fault                                                                                                | Inhibit Tach<br>Fault |
|                          | tachometer fault. The Alarm status will state that a tachometer fault condition exists unless the tachometer fault is inhibited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clear means do not inhibit tachometer fault                                                                                         | Do not inhibit        |
| Speed Range Enable       | Controls whether the selected alarm is enabled only when the measured speed is within a machine speed range. Enter the machine speed range in <b>Speed</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XM Configuration Utility                                                                                                            | EDS File              |
|                          | Range High and Speed Range Low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tachometer fault  Clear means do not inhibit tachometer fault   XM Configuration Utility  Check to Enable  Fault  Do not i  EDS Fil | Enabled               |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear to Disable                                                                                                                    | Disabled              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Utility Check to Enable Enabled                                                                                                     |                       |

| Parameter Name   | Description                                                                                                                                                                                  | Values/Comments |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Speed Range Low  | The lesser threshold of the machine speed range. This value must be less than the <b>Speed Range High</b> value.  This parameter is not used when <b>Speed Range Enabled</b> is disabled.    | RPM             |
| Speed Range High | The greater threshold of the machine speed range. This value must be greater than the <b>Speed Range Low</b> value.  This parameter is not used when <b>Speed Range Enabled</b> is disabled. | RPM             |

## **Relay Parameters**

The Relay parameters control the operation of the on-board relay, as well as the relays on the Expansion Relay (XM-441) module. Use these parameters to configure which alarm(s) the relay is associated with, as well as the behavior of the relay.

#### **IMPORTANT**

A relay can be defined, regardless of whether or not it is physically present. A non-physical relay is a virtual relay. When a relay (physical or virtual) activates, the module sends a Change of State (COS) message to its master, which acts on the condition as necessary. An XM-440 Master Relay Module can activate its own relays in response to a relay (physical or virtual) activation at any of its slaves.

| Parameter Name                                   | Description                                                             | Options/Comments                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number (XM Serial Configuration<br>Utility only) | Sets the relay to be configured in the XM Serial Configuration Utility. | Relay Number 1 is the on-board relay. Numbers 2 through 5 are either relays on the Expansion Relay module when it's connected to the module or virtual relays.  Virtual relays are non-physical relays. Use them when you want the effect of the relay (monitor alarms, delay, and change status) but do not need an actual contact closure. For example, a PLC or controller monitoring the relay status. |
|                                                  |                                                                         | <b>Note:</b> The <b>Relay Installed</b> parameter indicates whether a relay is a virtual relay or a physical relay on a module.                                                                                                                                                                                                                                                                            |

| Parameter Name                                  |                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Options/Comments                                                                          |             |
|-------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|
| Name (XM Serial C<br>Utility only)              | onfiguration       | A descriptive name to help identify the relay in the XM Serial Configuration Utility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum 18 characters                                                                     |             |
| Enable                                          |                    | Enable/disable the selected relay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | I           |
|                                                 |                    | Note: The Relay Current Status is set to "Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XM Configuration Utility                                                                  | EDS File    |
|                                                 |                    | Activated" when the relay is disabled. See page 89.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Check to Enable                                                                           | Enabled     |
|                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear to Disable                                                                          | Disabled    |
|                                                 | <u> </u>           | - Controls whether the relay must be explicitly reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |             |
| XM Configuration<br>Utility                     | EDS File           | after the alarm subsides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XM Configuration Utility                                                                  | EDS File    |
| Latching                                        | Latching<br>Option | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check means<br>latching (relay must<br>be explicitly reset)                               | Latching    |
|                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear means<br>non-latching (relay<br>is reset once the<br>alarm condition has<br>passed) | Nonlatching |
| Activation Delay                                |                    | Enter the length of time for which the <b>Activation</b> Logic must be true before the relay is activated. This reduces nuisance alarms caused by external noise and/or transient vibration events.  Important: True Peak and True Peak-to-Peak signal detection is more sensitive to transients and noise. To avoid false relay trips, it is strongly recommended that the <b>Activation Delay</b> value is greater than the <b>Overall Time Constant</b> value when <b>Signal</b> Detection is set to "True Peak" or "True Peak-to-Peak." Refer to Overall Measurement Parameters on page 63. | seconds.  Default is 1 second  ed                                                         |             |
| XM Configuration<br>Utility<br>Activation Logic | EDS File           | Sets the relay activation logic.     A or B - Relay is activated when either Alarm A or Alarm B meets or exceeds the selected Alarm  Status and itins (a)                                                                                                                                                                                                                                                                                                                                                                                                                                       | Options: A only A or B A and B                                                            |             |
|                                                 | 1                  | <ul> <li>Status condition(s).</li> <li>A and B - Relay is activated when both Alarm A and Alarm B meet or exceed the selected Alarm Status condition(s).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |             |
|                                                 |                    | • A Only - Relay is activated when Alarm A meets or exceeds the selected Alarm Status condition(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | neets                                                                                     |             |

| Parameter Name                                        |                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Options/Comments                                                                                           |                                                                     |
|-------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| XM Configuration<br>Utility<br>Alarm A/B              | EDS File  Alarm Identifier A/B | Sets the alarm(s) that the relay will monitor. The alarm must be from the same device as the relay. When the <b>Activation Logic</b> is set to "A and B" or "A or B," you can select an alarm in both <b>Alarm A</b> and <b>Alarm B</b> . The system monitors both alarms. When the <b>Activation Logic</b> is set to "A Only," you can select an alarm only in <b>Alarm A</b> .                                                                                                                                                                                                                                                                                                                                                                                                             | Alarm No. 1 to 16  Note: You can only select an alarm that is enabled.                                     |                                                                     |
| XM Configuration Utility  Alarm Status to Activate On | EDS File  Alarm Levels         | Sets the alarm conditions that will cause the relay to activate. You can select more than one.  Normal - The current measurement is not within excess of any alarm thresholds.  Alert - The current measurement is in excess of the alert level threshold(s) but not in excess of the danger level threshold(s).  Danger - The current measurement is in excess of the danger level threshold(s).  Disarm-The alarm is disabled or the device is in Program mode.  Xdcr Fault - A transducer fault is detected on the associated transducer.  Module Fault - Hardware or firmware failure, or an error has been detected and is preventing proper operation of the device.  Tacho Fault - A required tachometer signal has not been detected. Note that there is no transducer fault either. | Options: Normal Danger Xdcr Fault Tacho Fault Alert Disarm Module Fault Check to enable. Clear to disable. |                                                                     |
| Relay Installed                                       |                                | Indicates whether the relay is a physical relay on a module or a virtual relay. If the relay is a physical relay, then you can set the <b>Failsafe</b> parameter.  If the relay is a virtual relay, the <b>Failsafe</b> parameter is not used or it is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XM Configuration Utility Check = Physical Relay Clear = Virtual Relay                                      | EDS File  Installed = Physical Relay  Not Installed = Virtual Relay |

| Parameter Name           |                                                                                                             | Description                                                                                                                                                                            | Options/Comments            |             |
|--------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|
| XM Configuration Utility | EDS File                                                                                                    | Determines whether the relay is failsafe or non-failsafe.                                                                                                                              | XM Configuration Utility    | EDS File    |
| Failsafe Relay           |                                                                                                             | Failsafe operation means that when in alarm, the relay contacts are in their "normal," de-energized, or "shelf-state" positions. In other words, normally                              | Check means failsafe        | Failsafe    |
|                          |                                                                                                             | closed relays are closed in alarm, and normally open relays are open in alarm. With failsafe operation, a power failure equals an alarm.                                               | Clear means<br>non-failsafe | Nonfailsafe |
|                          |                                                                                                             | The following are true of a relay in failsafe operation:                                                                                                                               |                             |             |
|                          |                                                                                                             | <ul> <li>The relay is energized when power is applied to<br/>the module.</li> <li>The relay in a nonalarmed condition has power<br/>applied to the coil.</li> </ul>                    |                             |             |
|                          |                                                                                                             | In alarm condition, power is removed from the relay coil, causing the relay to change state.                                                                                           |                             |             |
|                          | <ul> <li>Under nonalarm conditions, the relay closes the circuit between the common and the N.C.</li> </ul> | For non-failsafe operation, the following are true:  • Under nonalarm conditions, the relay closes the circuit between the common and the N.C. (normally closed) terminals.            |                             |             |
|                          |                                                                                                             | Under alarm conditions, the relay changes state to close the circuit between the common and the N.O. (normally open) terminals.                                                        |                             |             |
|                          |                                                                                                             | For failsafe operation, the following are true:  • Under nonalarm (with power applied to the unit) conditions, the relay closes the circuit between the common and the N.O. terminals. |                             |             |
|                          |                                                                                                             | <ul> <li>Under alarm or loss-of-power conditions, the relay<br/>changes state to close the circuit between the<br/>common and the N.C. terminals.</li> </ul>                           |                             |             |

## 4-20 mA Output Parameters

The 4-20 mA output parameters define the characteristics of the two 4-20 mA output signals. The parameters are the same for each output.

#### 4-20 mA Parameters

| Description                                                                             | Options/Comments                                                                                                                                                                                 |                                                                                    |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Enables/disables the 4-20 mA output.                                                    | XM Configuration Utility                                                                                                                                                                         | EDS File                                                                           |
|                                                                                         | Check to enable                                                                                                                                                                                  | Enabled                                                                            |
|                                                                                         | Clear to disable                                                                                                                                                                                 | Disabled                                                                           |
| Sets the type of measurement and the channel that the 4-20 mA output signal will track. | Options: Ch1 / Ch2 Overall Ch1 / Ch2 Gap Ch1 / Ch2 Band 1–4 Speed Ch1 / Ch2 1X Mag Ch1 / Ch2 2X Mag Ch1 / Ch2 3X Mag Ch1 / Ch2 Not 1X Ch1 / Ch2 Sum Harmonics Acceleration Ch1 / Ch2 gSE Overall |                                                                                    |
| The measured value associated with the 4 mA.                                            |                                                                                                                                                                                                  |                                                                                    |
| The measured value associated with the 20 mA.                                           | <b>Data Unit</b> selection for the specifichannel.                                                                                                                                               |                                                                                    |
|                                                                                         | Enables/disables the 4-20 mA output.  Sets the type of measurement and the channel that the 4-20 mA output signal will track.  The measured value associated with the 4 mA.                      | Enables/disables the 4-20 mA output.    XM Configuration Utility   Check to enable |

#### **IMPORTANT**

Measured values between **Min Range** and **Max Range** are scaled into the range from 4.0 to 20.0 to produce the output value. The **Min Range** value does not have to be less than the **Max Range** value. If the **Min Range** value is greater than the **Max Range** value, then the output signal is effectively inverted from the input signal.

#### **IMPORTANT**

The 4-20 mA outputs are either on or off. When they are on, the 4-20 mA output overshoots the 4 and 20mA limits by 10% when the measurement exceeds the minimum and maximum range. This means the minimum current produced is 3.6 mA and the maximum current produced is 22 mA.

When the 4-20 mA outputs are off, the 4-20 mA output produces a current approximately 2.9 mA. The 4-20 mA outputs are off under the following conditions:

- The 4-20 mA outputs are set to "Disable" (see **Enable** above).
- The module is in Program mode.
- A transducer fault or tachometer fault occurs that affects the corresponding measurement.

## **Triggered Trend Parameters**

The XM-122 module can collect a triggered trend. A triggered trend is a time-based trend that is collected when a relay on the XM module is activated, or the module receives a trigger event.

Once the triggered trend is configured, the XM-122 continuously monitors the trended measurements. When a trigger occurs, the XM module collects additional data as specified by the **Post Trigger** parameter. The XM-122 can also store the spectrum or waveform at the time of the trigger.

The XM-122 can only store one triggered trend. Unless the triggered trend is latched, the trend data is overwritten with new data when the next trigger occurs.

The triggered trend parameters define the trend data that is collected by the module. Use these parameters to select the measurements included in the

trend records, the interval between trend records, and which relay triggers (activates) the collection of the trend data.

**IMPORTANT** 

The Triggered Trend parameters are not included in the EDS file and cannot be edited using generic configuration tools such as RSNetWorx for DeviceNet.

#### **Triggered Trend Parameters**

| Parameter Name                         | Description                                                                                                                                                                                                                                                                                                                                                                            | Values/Comments                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enable Triggered Trend<br>Measurements | Enables/disables the triggered trend measurements. Select to configure the triggered trend measurements.                                                                                                                                                                                                                                                                               | Check to enable.<br>Clear to disable.                                                                                                                                                                                                                                                                                                         |
| Select Measurements                    | Sets the measurements to be collected and stored in the module.                                                                                                                                                                                                                                                                                                                        | 1 to 16 measurements can be selected.                                                                                                                                                                                                                                                                                                         |
| Number of Records                      | The maximum number of measurement sets that can be collected in the trend buffer. The measurement sets make up the trend data.                                                                                                                                                                                                                                                         | The Number of Records is automatically calculated based upon the number of <b>Trended Measurements</b> selected.                                                                                                                                                                                                                              |
| Latch Enable                           | Determines whether the trigger trend is latched or unlatched.  Latched means that subsequent triggers are ignored after the initial trigger. This prevents the trend data from being overwritten with new data until the trigger is manually reset (click <b>Reset Trigger</b> button).  Unlatched means that the trend data is overwritten with new data every time a trigger occurs. | Check means latched<br>Clear means unlatched                                                                                                                                                                                                                                                                                                  |
| Relay Number                           | Sets the relay that triggers the trend to be collected.                                                                                                                                                                                                                                                                                                                                | None means that the trend can only be triggered manually or by a trigger event (for example, XM-440).  Relay Number 1 is the on-board relay. Numbers 2 through 5 are either relays on the Expansion Relay module when it's connected to the module or virtual relays.  Note: The relay must be enabled. Refer to Relay Parameters on page 78. |
| Record Interval                        | The amount of time between consecutive trend records.  Note: If you enter a Record Interval, the Trend Span is automatically updated.                                                                                                                                                                                                                                                  | 1 to 3600 seconds                                                                                                                                                                                                                                                                                                                             |

#### **Triggered Trend Parameters**

| Parameter Name      | Description                                                                                                                                                                                                                                           | Values/Comments                                                                                                                                                                                                                                                                  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trend Span          | The total amount of time that can be covered by the trend data ( <b>Number of Records</b> x <b>Record Interval</b> ).                                                                                                                                 | Seconds                                                                                                                                                                                                                                                                          |
|                     | <b>Note</b> : If you edit the Trend Span, the <b>Record Interval</b> is automatically updated.                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |
| Post Trigger        | The percentage of records to be collected once the trigger occurs. For example, if you set Post Trigger to 20%, then 80% of the records in the trend are before the trigger occurs, and 20% of the records in the trend are after the trigger occurs. | 0 to 100 Percent                                                                                                                                                                                                                                                                 |
|                     | This allows you to evaluate what happened after the trigger occurred.                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                  |
| Status              | Shows the status of the trend data.                                                                                                                                                                                                                   | Possible status values:                                                                                                                                                                                                                                                          |
|                     |                                                                                                                                                                                                                                                       | <ul> <li>Not collected - No trend data is currently collected.</li> <li>Collecting - A trigger has occurred and data (including post-trigger data) is being collected.</li> <li>Collected - A trend has been saved to the buffer and is available to view and upload.</li> </ul> |
| Store Spectrum      | Stores the current spectrum data for both Channel 1 and Channel 2 when the trigger occurs.                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |
| Store Waveform      | Stores the current waveform data for both Channel 1 and Channel 2 when the trigger occurs.                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |
| View Trend Data     | Displays a plot of the collected trend data.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |
| Reset Trigger       | Resets the trigger if <b>Latch enabled</b> is selected. This allows the module to overwrite the previous trend data when the next trigger occurs.                                                                                                     |                                                                                                                                                                                                                                                                                  |
| Manual Trigger      | Triggers the module to collect the trend data without relay activation.                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  |
| View Collected Data | Displays a plot of the collected spectrum or waveform data.                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                  |

## **SU/CD Trend Parameters**

The XM-122 module can collect startup or coast-down trend data when the machine speed passes into a defined speed range. A tachometer input is required to collect the startup/coast-down trend.

The XM-122 collects a startup trend when the machine speed rises through the **Minimum Speed** + 8 RPM, and stops when the machine speed crosses either the **Minimum Speed** or the **Maximum Speed**. The module collects data only when machine speed is increasing. It does not collect data if the machine speed is constant or decreasing.

The XM-122 collects a coast-down trend when the machine speed falls through the **Maximum Speed** - 8 RPM, and stops when the machine speed crosses either the **Minimum Speed** or the **Maximum Speed**. The module collects data when the machine speed is decreasing or increasing during the coast-down trend (for example, a coast-down restart).

The XM-122 can only store one startup/coast-down trend. Unless the startup/coast-down trend is latched, the trend data is overwritten with new data when the next trigger occurs.

The SU/CD trend parameters define the trend data that is collected by the module during the startup or coast-down of a machine. Use these parameters to configure the measurements included in the startup and coast-down trend records, the interval between trend records, and the minimum and maximum speed limits at which record collection starts and stops.

#### **IMPORTANT**

The SU/CD Trend parameters are not included in the EDS file and cannot be edited using generic configuration tools such as RSNetWorx for DeviceNet.

#### **SU/CD Trend Parameters**

| Parameter Name      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Values/Comments                                                                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Enable SU/CD Trend  | Enable/disable the SU/CD trend measurements. Select to configure the SU/CD trend measurements.                                                                                                                                                                                                                                                                                                                                                                                 | Check to enable.<br>Clear to disable.                                                                            |
| Select Measurements | Sets the measurements to be collected and stored in the module.                                                                                                                                                                                                                                                                                                                                                                                                                | 1 to 16 measurements can be selected.                                                                            |
|                     | <b>Note</b> : The Speed measurement is always included in the startup/coast-down trend.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
| Number of Records   | The maximum number of measurement sets that can be collected in the trend buffer. The measurement sets make up the trend data.                                                                                                                                                                                                                                                                                                                                                 | The Number of Records is automatically calculated based upon the number of <b>Trended Measurements</b> selected. |
| Latch Enable        | Determines whether the startup/coast-down trend is latched or unlatched.  Latched means that subsequent startup/coast-down trends are ignored after the initial startup/coast-down. This prevents the trend data from being overwritten with new data until the trigger is manually reset (click <b>Reset Trigger</b> button).  Unlatched means that the startup/coast-down trend data is overwritten with new data every time the machine speed crosses into the speed range. | Check means latched<br>Clear means unlatched                                                                     |
| Record Interval     | The change in speed between consecutive records.  Note: If you enter a Record Interval, the Maximum Trend Span is automatically updated.                                                                                                                                                                                                                                                                                                                                       | 1 to 3600 RPM                                                                                                    |

### **SU/CD Trend Parameters**

| Parameter Name     | Description                                                                                                                                                              | Values/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum Trend Span | The maximum change in speed that can be covered by the trend data (Number of Records x Record Interval).  Note: If you edit the Trend Span, the Record                   | RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | Interval is automatically updated.                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Minimum Speed      | The lesser limit of the speed range in which records are collected in the startup/coast-down trend. This value must be less than the <b>Maximum Speed</b> value.         | RPM Startup/Coast-down Trend Considerations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maximum Speed      | The greater limit of the speed range in which records are collected in the startup/coast-down trend. This value must be greater than the <b>Minimum Speed</b> value.     | The XM module collects a startup trend when the machine speed rises through the Minimum Speed + 8 RPM, and stops when the machine speed crosses either the Minimum Speed or the Maximum Speed. The module collects data only when the machine is increasing. It does not collect data if the machine speed is constant or decreasing.  The XM module collects a coast-down trend when the machine speed falls through the Maximum Speed - 8 RPM, and stops when the machine speed crosses either the Minimum Speed or the Maximum Speed. The module collects data when the machine speed is decreasing or increasing during a coast-down trend (for example, a coast-down restart). |
| Status             | Shows the status of the trend data.                                                                                                                                      | Possible status values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                                                                                                                          | <ul> <li>Not collected - No trend data is currently collected.</li> <li>Collecting - A trigger has occurred and data is being collected.</li> <li>Collected - A trend has been saved to the buffer and is available to view or upload.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| View Trend Data    | Displays a plot of the collected trend data.                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reset Trigger      | Resets the trigger if <b>Latch enabled</b> is selected. This allows the module to overwrite the previous trend data when the machine speed crosses into the speed range. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### I/O Data Parameters

The I/O data parameters are used to configure the content and size of the DeviceNet I/O Poll response message.

#### **IMPORTANT**

The XM-122 must be free of Poll connections when configuring the **Poll Output** (**Poll Response Assembly**) and **Poll Size**. Any attempt to download the parameters while a master has established the Poll connection with the XM-122 will result in an error.

To close an existing Poll connection with an XM-440, switch the XM-440 from Run mode to Program mode. Refer to Changing Operation Modes on page 103.

To close an existing Poll connection with other master devices, remove the XM-122 from the scan list or turn off the master device.

#### I/O Data Parameters

| Parameter Name                                                    |                              | Description                                                                                                                                                                                                   | Values/Comments                                                                                       |
|-------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| COS Size (XM Serial<br>Configuration Utility only)                |                              | The size (number of bytes) of the Change of State (COS) message.                                                                                                                                              | The COS Size cannot be changed.                                                                       |
| COS Output (XM Serial<br>Configuration Utility only)              |                              | The Assembly instance used for the COS message. The COS message is used to produce the Alarm and Relay status for the module.                                                                                 | The COS Output cannot be changed.<br>Refer to COS Message Format on<br>page 114 for more information. |
| Poll Size                                                         |                              | Sets the size (number of bytes) of the Poll response message. Decreasing the maximum size will truncate data from the end of the Assembly structure.  Important: If you set the Poll Output to "Custom"       | The minimum size is 4 bytes and the maximum size is 124 bytes.                                        |
|                                                                   |                              | Assembly," the poll size is automatically set to the actual size of the customized Poll response.                                                                                                             |                                                                                                       |
| XM Configuration<br>Utility                                       | EDS File                     | Sets the Assembly instance used for the Poll response message. Each Assembly instance contains a different arrangement of the Poll data.                                                                      | Options: Assembly Instance 101 Assembly Instance 102 Assembly Instance 103                            |
| Poll Output                                                       | Poll<br>Response<br>Assembly | The Poll response message is used by the XM module to produce measured values. It can contain up to 31 REAL values for a total of 124 bytes of data.                                                          | Assembly Instance 104 Assembly Instance 105 Assembly Instance 106 Custom Assembly                     |
|                                                                   |                              |                                                                                                                                                                                                               | Refer to Poll Message Format on page 107 for more information.                                        |
| Assembly Instance Table (XM<br>Serial Configuration Utility only) |                              | Displays the format of the currently selected COS or Poll Assembly instance.                                                                                                                                  | The highlighted (yellow) Assembly structure bytes are included in the I/O message.                    |
| Custom Assembly (XM Serial<br>Configuration Utility only)         |                              | Defines a custom data format for the Poll response. The custom assembly can contain any of the measurement parameters included in Assembly instance 101, as well as alarm and relay configuration parameters. | You can select up to 20 parameters.  Refer to Poll Message Format on page 107 for more information.   |

## **Data Parameters**

The Data parameters are used to view the measured values of the input channels and the 4–20 mA outputs, as well as to monitor the status of the channels, alarms, and relays.



To view all the data parameters in the XM Serial Configuration Utility, click the **View Data** tab.

### **Monitor Data Parameters**

#### **Monitor Data Parameters**

| Parameter Name                         |                           | Description                                                                                                                      | Values/Comments                                                                                                                 |
|----------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| XM Configuration<br>Utility            | EDS File                  | States whether a transducer fault exists on the associated channel.                                                              | Possible status values: No Fault<br>Fault                                                                                       |
| Transducer Fault                       | Transducer<br>Status      | If a fault exists, the overall and gap values may not be accurate.                                                               |                                                                                                                                 |
|                                        |                           | - Shows the measured average DC offset of the                                                                                    |                                                                                                                                 |
| XM Configuration Utility               | EDS File                  | transducer signal. This value is compared with <b>Fault High</b> and <b>Fault Low</b> to determine whether the                   |                                                                                                                                 |
| DC Gap Voltage                         | Measured<br>DC Bias       | transducer is working properly.                                                                                                  |                                                                                                                                 |
| Gap Value (EDS File                    | e only)                   | Shows the measured transducer gap value.                                                                                         |                                                                                                                                 |
| XM Configuration   EDS File   Utility  |                           | Shows the measured sum harmonics value.                                                                                          | Sum Harmonics Requirements:  • The tachometer must be enabled                                                                   |
| Sum Harmonics                          | Sum<br>Harmonics<br>Value |                                                                                                                                  | (Pulses Per Revolution set to 1 o more), and a tachometer signal mus be present.  • Sampling Mode must be set to "Synchronous." |
| Overall                                |                           | Shows the measured overall value.                                                                                                |                                                                                                                                 |
| Band Measuremen<br>Serial Configuratio |                           | States whether a fault condition exists on the associated channel. If a fault exists, the band measurements may not be accurate. | Possible status values: No Fault<br>Fault                                                                                       |
| XM Configuration<br>Utility            | EDS File                  | Shows the measured band value.                                                                                                   |                                                                                                                                 |
| Band<br>Measurement                    | Band<br>Measured<br>Value |                                                                                                                                  |                                                                                                                                 |

#### **Monitor Data Parameters**

| Parameter Name                                                                |                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Values/Comments                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not 1X and Vector Status (XM<br>Serial Configuration Utility only)            |                        | States whether a fault condition exists on the associated channel. If a fault exists, the not 1X and vector measurements may not be accurate.  The following conditions can cause a fault:  • a transducer fault on the associated channel  • no tachometer signal or a transducer fault exists on the tachometer channel  • the machine speed changes too fast for the tracking algorithm to keep up or if the frequency of <b>FMAX</b> goes outside the range of 10 to 5000Hz | Possible status values: No Fault<br>Fault                                                                                                                                                                                   |
| Not 1X Value                                                                  |                        | Shows the magnitude of the vibration excluding the vibration at the machine speed.                                                                                                                                                                                                                                                                                                                                                                                              | The tachometer must be enabled (Pulses Per Revolution set to 1 or                                                                                                                                                           |
| 1X Magnitude                                                                  |                        | The magnitude of the vibration at the machine speed.                                                                                                                                                                                                                                                                                                                                                                                                                            | more), and a tachometer signal must<br>be present.                                                                                                                                                                          |
| 1X Phase                                                                      |                        | The phase of the vibration at the machine speed.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |
| 2X Magnitude                                                                  |                        | The magnitude of the vibration at two times the machine speed.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                             |
| 2X Phase                                                                      |                        | The phase of the vibration at two times the machine speed.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |
| 3X Magnitude                                                                  |                        | The magnitude of the vibration at three times the machine speed.                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |
| Ch1/Ch2 Spectrum/Waveform<br>Status (XM Serial Configuration<br>Utility only) |                        | States whether a fault condition exists on the associated channel. If a fault exists, the spectrum/waveform data may not be accurate.  The following conditions can cause a fault:  • a transducer fault on the associated channel  • Sampling Mode set to "Synchronous" and there is no tachometer signal or there is a fault on the tachometer channel                                                                                                                        | Possible status values: No Fault<br>Fault                                                                                                                                                                                   |
| Get Waveform Data Only (XM<br>Serial Configuration Utility only)              |                        | Controls whether the spectrum is calculated by the Configuration Utility or the Vibration module.                                                                                                                                                                                                                                                                                                                                                                               | Check to upload only waveform data from the module. The Configuration Utility calculates and displays the spectrum using the collected waveform data.  Clear to upload both the waveform and spectrum data from the module. |
| XM Configuration<br>Utility                                                   | EDS File               | States whether a fault condition (no tachometer signal or transducer fault) exists on the tachometer channel. If a fault exists, the speed value may not be                                                                                                                                                                                                                                                                                                                     | Possible status values: No Fault<br>Fault                                                                                                                                                                                   |
| Speed Status                                                                  | Transducer 3<br>Status | accurate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |

#### **Monitor Data Parameters**

| Parameter Name                                                   |                                      | Description                                                                                                                              | Values/Comments                                                                  |  |
|------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| XM Configuration EDS File Utility                                |                                      | Shows the measured average DC offset of the tachometer signal. This value is compared with Fault High and Fault Low to determine whether | The tachometer must be enabled ( <b>Pulses Per Revolution</b> set to 1 or more). |  |
| Xdcr DC Bias                                                     | (Transducer<br>3 Measured<br>DC Bias | the tachometer is working properly.                                                                                                      |                                                                                  |  |
| Speed Value                                                      |                                      | Shows the measured speed value.                                                                                                          |                                                                                  |  |
| Peak Speed                                                       |                                      | Shows the greatest measured <b>Speed Value</b> (positive or negative) since the most recent reset.                                       |                                                                                  |  |
| Acceleration Measured Value                                      |                                      | Show the measured acceleration value. The acceleration is the rate of change of the <b>Speed Value</b> .                                 |                                                                                  |  |
| 4–20 mA Output A and B (XM<br>Serial Configuration Utility only) |                                      | Shows the current output value in the range of 4.0 to 20.0 mA.                                                                           |                                                                                  |  |
| gSE Status (XM Serial<br>Configuration Utility only)             |                                      | States whether a fault condition exists on either channel. If a fault exists, the gSE overall value may not be accurate.                 | Possible status values: No Fault<br>Fault                                        |  |
| gSE Overall                                                      |                                      | Shows the measured gSE overall value.                                                                                                    |                                                                                  |  |

## **Alarm and Relay Status Parameters**

### **Alarm and Relay Status Parameters**

| Parameter Name | Description                             | Values/Comments                                                                                                                                                                                                                                                 |
|----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm Status   | States the current status of the alarm. | Possible status values:                                                                                                                                                                                                                                         |
|                |                                         | Normal - The alarm is enabled, the device is in Run mode, there is no transducer fault, and the current measurement is not within the Alert or Danger Threshold value(s).                                                                                       |
|                |                                         | <ul> <li>Alert - The alarm is enabled, the<br/>device is in Run mode, there is no<br/>transducer fault, and the current<br/>measurement is in excess of the<br/>Alert Threshold value(s) but not in<br/>excess of the Danger Threshold<br/>value(s).</li> </ul> |
|                |                                         | <ul> <li>Danger - The alarm is enabled, the<br/>device is in Run mode, there is no<br/>transducer fault, and the current<br/>measurement is in excess of the<br/>Danger Threshold value(s).</li> </ul>                                                          |
|                |                                         | • <b>Disarm</b> -The alarm is disabled or the device is in Program mode.                                                                                                                                                                                        |
|                |                                         | <ul> <li>Transducer Fault - The alarm is<br/>enabled, the device is in Run mode,<br/>and a transducer fault is detected on<br/>the associated transducer.</li> </ul>                                                                                            |
|                |                                         | <ul> <li>Tachometer Fault - The alarm is<br/>enabled, the device is in Run mode,<br/>a tachometer fault exists, but there<br/>is no transducer fault.</li> </ul>                                                                                                |
|                |                                         | <ul> <li>Module Fault - Hardware or<br/>firmware failure, or an error has<br/>been detected and is preventing<br/>proper operation of the device.</li> </ul>                                                                                                    |
| Relay Status   | States the current status of the relay. | Possible status values: Activated<br>Not Activated                                                                                                                                                                                                              |

## **Device Mode Parameters**

The Device Mode parameters are used to control the functions and the behavior of the device.

**IMPORTANT** 

The XM Serial Configuration Utility handles these parameters automatically and transparently to the user.

#### **Device Mode Parameters**

| Parameter Name | Description                                                                                                                                                                                                                                                        | Values/Comments                   |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Device Mode    | Sets the current operation mode of the device. Refer to Changing Operation Modes on page 103 for more information.                                                                                                                                                 | Options: Run Mode<br>Program Mode |
| Autobaud       | Enables/disables autobaud.  When autobaud is set to "Enabled," the module will listen to other devices on the network to determine the correct baud rate to use for communications. When autobaud is set to "Disabled," the module baud rate must be set manually. | Options: Enabled<br>Disabled      |

# **Specifications**

The Appendix lists the technical specifications for the XM-122 module.

### **XM-122 Technical Specifications**

| Product Feature           | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communications  DeviceNet | Standard DeviceNet protocol for all functions  NOTE: The XM-122 uses only the DeviceNet protocol, not power. Module power is provided independently.  Available Electronic Data Sheet (EDS) file provides support for most DeviceNet compliant systems  Baud rate automatically set by bus master to 125kb, 250kb, 500kb  Configurable I/O Poll Response message helps optimize space utilization within scanner input tables  Selectable Poll Response Assembly Selectable Poll Response Size (bytes) |
| Side Connector            | All XM measurement and relay modules include side connectors that allow interconnecting adjacent modules, thereby simplifying the external wiring requirements.  The interconnect provides primary power, DeviceNet communication, and the circuits necessary to support expansion modules, such as the XM-441 Expansion Relay module.                                                                                                                                                                 |
| Seria                     | RS-232 via mini-connector or terminal base unit  Baud rate fixed at 19200.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | NOTE: Local configuration via Serial<br>Configuration Utility.                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**XM-122 Technical Specifications** 

| Product Featu                                                          | ire                                                                                                    | Specification                                                                                                                                                                                             |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs                                                                 | 2 Channels                                                                                             | Eddy current transducer signals Accelerometer signals Voltage signals from any dynamic measurement device, such as a velocity or pressure transducer                                                      |
|                                                                        | Transducer Power                                                                                       | Constant voltage (+24V dc)* Constant current (4.5 mA ± 20% from +24V dc)* None (voltage input)                                                                                                            |
|                                                                        | *Tachometer may be powered, constant voltage,<br>or configured as voltage input.                       |                                                                                                                                                                                                           |
|                                                                        | Voltage Range                                                                                          | Selectable in software as 0 to ±20 V (min) 40 V max. peak-to-peak                                                                                                                                         |
|                                                                        | Sensitivity                                                                                            | User configurable in software                                                                                                                                                                             |
|                                                                        | Input Impedance                                                                                        | Greater than 100 kohms                                                                                                                                                                                    |
| Tachometer                                                             | 1 Tachometer Input                                                                                     | ±25 V (50 V max. peak to peak)<br>1 to 50,000 events per revolution                                                                                                                                       |
| Speed/Frequency Range Speed Measurement Error  Outputs 4-20 mA Outputs | Input Impedance                                                                                        | 120 kohms minimum                                                                                                                                                                                         |
|                                                                        | Speed/Frequency Range                                                                                  | 1 to 1,200,000 RPM<br>0.0167 to 20,000 Hz                                                                                                                                                                 |
|                                                                        | 1 to 12,000 RPM* +/- 1 RPM<br>12,001 to 120,000 RPM* +/- 6 RPM<br>120,001 to 1,200,000 RPM* +/- 50 RPM |                                                                                                                                                                                                           |
|                                                                        |                                                                                                        | * Exponential Averaging Time Constant parameter set to ≥ 120ms                                                                                                                                            |
|                                                                        | 4-20 mA Outputs                                                                                        | Each output is independently programmed to represent any measured parameter, from either channel. Two isolated outputs 300 ohm max load                                                                   |
|                                                                        | Buffered Outputs                                                                                       | 1 active buffer per vibration input channel<br>Resistive buffer for tachometer                                                                                                                            |
| Indicators                                                             | 7 LEDs                                                                                                 | Module Status - red/green<br>Network Status - red/green<br>Channel 1 Status - yellow/red<br>Channel 2 Status - yellow/red<br>Tachometer Status - yellow/red<br>Setpoint Multiplier -yellow<br>Relay - red |

## **XM-122 Technical Specifications**

| Product Feature                   | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Conditioning Sampling Mode | Asynchronous<br>Synchronous                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Frequency Range                   | 1 Hz to 20 kHz                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Resolution                        | A/D Conversion: 24 bits Dynamic Range: <80 dBfs (0.01% fs), -90 dBfs (typical) FFT Lines / Waveform block size: 100 / 256 200 / 512 400 / 1024 800 / 2048                                                                                                                                                                                                                                                                                    |
| Amplitude Range                   | Dependent on sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Integration                       | Two levels provided, first in hardware, second in firmware                                                                                                                                                                                                                                                                                                                                                                                   |
| Averaging                         | Any number of averages may be specified If sampling mode is Asynchronous: Averaging performed on the spectra Synchronous: Averaging performed on the waveforms                                                                                                                                                                                                                                                                               |
| Low Pass Filters                  | Independently configured per channel<br>Spectra FMAX: 10 to 2000 Hz<br>gSE Spectra FMAX: 10 to 5000 Hz<br>Optional Overall Measurement LP filter: 200<br>to 2000 Hz<br>Roll Off: -24 dB per octave                                                                                                                                                                                                                                           |
| High Pass Filters                 | Independently configured per channel Integration Off: 1, 5, 10, 40, 1000 Hz Roll Off: -30 dB per octave for the 1 Hz HPF, otherwise -24 dB per octave Integration On: 5, 10, 40, 1000 Hz Roll Off: Single Integration: -30 dB per octave for the 5Hz HPF, otherwise -24 dB per octave Double Integration: -42 dB per octave for the 5 Hz HPF, otherwise -24 dB per octave gSE HPF: 200, 500, 1000, 2000, 5000 Hz Roll Off: -12 dB per octave |
| Measured Units                    | g um<br>ips volt<br>mm/s psi<br>mils Pa                                                                                                                                                                                                                                                                                                                                                                                                      |

## **XM-122 Technical Specifications**

| Product Feature                                          | Specification                                                                                                                                                                                              |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Complex Data                                             | Spectra (synchronous or asynchronous)<br>gSE Spectra<br>Waveform (synchronous or asynchronous)<br>Simultaneous Waveforms (synchronous)                                                                     |
| Measured Parameters Overall                              | gSE Overall<br>RMS<br>Peak (true or calculated)<br>Peak to Peak (true or calculated)                                                                                                                       |
| 4 (overlapping) Bands Per Channel<br>(Hz or Order based) | Band overall, or<br>Max peak in band                                                                                                                                                                       |
| Gap (or transducer bias voltage)                         |                                                                                                                                                                                                            |
| Speed                                                    |                                                                                                                                                                                                            |
| Acceleration                                             |                                                                                                                                                                                                            |
| Orders                                                   | Magnitude: 1x, 2x, 3x<br>Phase: 1x, 2x                                                                                                                                                                     |
| Not 1x                                                   |                                                                                                                                                                                                            |
| Sum Harmonics                                            | Sum Harmonics is the sum of all harmonics from a user-defined first order to the maximum order in the spectra.                                                                                             |
| Data Buffers  Delta Time Buffer                          | Number or Records: 2048  Delta Time Interval: 1 to 3600 seconds  Trigger Mode: Relay on the XM-122 module is activated, or by a trigger signal (for example, DeviceNet command from a controller or host). |
| Delta RPM Buffer                                         | Number of Records: 512 Delta Speed Interval: 1 to 3600 RPM Trigger Mode: Startup collects data in increasing rpm direction only; Coast-down collects data in both increasing and decreasing directions.    |
|                                                          | Note: The data collected in the buffer is user defined and may contain up to 16 of the Measured Parameters specified above.                                                                                |
| Spectra or Waveform                                      | Saved upon same trigger as Delta Time<br>Buffer                                                                                                                                                            |

## **XM-122 Technical Specifications**

| Product Feature                         | Specification                                                                                                                       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Alarms Number                           | 16 alarm and danger pairs                                                                                                           |
| Alarm Parameters                        | Any measured parameter                                                                                                              |
| Operators                               | Greater than Less than Inside range Outside range                                                                                   |
| Hysteresis                              | User configurable in software                                                                                                       |
| Startup Inhibit/Setpoint Multiplication | Period: 0 to 1092 minutes, adjustable in 0.1 minute increments Inhibit/multiplication function: Multiply by N (0 to 10, 0 = Disarm) |
| Speed Inhibit                           | A speed range may be specified for each alarm. When applied, the alarm is disabled when speed is outside of the defined range.      |

**XM-122 Technical Specifications** 

| Product Feature       | Specification                                                                                                                                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relays Number         | Single on-board relay, two sets of contacts - DPDT (2 Form C) Four additional relays when connected to an XM-441 Expansion Relay module, or Four virtual relays whose status can be used by remote Control Systems or the XM-440 Master Relay module |
| On-board Relay Rating | Maximum Voltage: 120V dc, 125V ac Maximum Current: 3.5 A* Minimum Current: 0 Maximum Power: 60 W, 62.5V A *Max current is up to 40°C, then derates to 2 A at 65°C Agency Rating: 120V ac @ 0.5 A 110V dc @ 0.3 A 30V dc @ 1.0 A                      |
| Failsafe              | Normally energized (failsafe), or<br>Normally de-energized (non-fail-safe)                                                                                                                                                                           |
| Latching              | Latching, or<br>Non-latching                                                                                                                                                                                                                         |
| Time Delay            | 0 to 25.5 seconds, adjustable in 100msec increments                                                                                                                                                                                                  |
| Voting Logic          | Single or paired "And" or "Or" logic applied to any alarm                                                                                                                                                                                            |
| Reset                 | Local reset switch on top of module Remote reset switch wired to terminal base Digital reset command via serial or DeviceNet interface                                                                                                               |
| Activation On         | Alarm Status: Normal Alert Danger Disarm Transducer fault Module fault Tacho fault                                                                                                                                                                   |
| Peak Speed Capture    | The XM-122 retains the value of the greatest speed observed since the module power was cycled or the "peak speed" value was manually reset.                                                                                                          |

## **XM-122 Technical Specifications**

| Product Feature                 | Specification                                                                                                                                                                                                                   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Volatile Configuration      | A copy of the module configuration is retained in non-volatile memory from where it is loaded upon power up*.                                                                                                                   |
|                                 | *The configuration stored in non-volatile memory can be deleted only by a module-reset command sent via the serial interface, using the Serial Configuration Utility, or via DeviceNet from any compliant software application. |
| Accuracy (minimum)              | ±1% of full scale range for the channel<br>±1% of alarm setpoint for speed                                                                                                                                                      |
| Power Mo                        | odule +21.6 to +26.4V dc                                                                                                                                                                                                        |
| Consump                         | ption Maximum: 300 mA<br>Typical: 175 mA                                                                                                                                                                                        |
| Heat Produc                     | ction Maximum: 7 Watts (24 BTU/hr) Typical: 4 Watts (14 BTU/hr)                                                                                                                                                                 |
| Transd                          | ducer Isolated 24V dc, user configurable with wiring                                                                                                                                                                            |
| Environmental Operating Tempera | -20 to +65°C (-4 to +149°F)                                                                                                                                                                                                     |
| Storage Tempera                 | -40 to +85°C (-40 to +185°F)                                                                                                                                                                                                    |
| Relative Hum                    | nidity 95% non-condensing                                                                                                                                                                                                       |
| Conformal Coa                   | All printed circuit boards are conformally coated in accordance with IPC-A-610C.                                                                                                                                                |
| Physical Dimens                 | Height: 3.8 in (97 mm) Width: 3.7 in (94 mm) Depth: 3.7 in (94 mm)                                                                                                                                                              |
| Terminal Screw To               | orque 7 pound-inches (0.6 Nm)                                                                                                                                                                                                   |

## **XM-122 Technical Specifications**

| Product Feature                                 | Product Feature Specification |                                                                                                                             |
|-------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Approvals (when product or packaging is marked) | UL                            | UL Listed for Ordinary<br>Locations                                                                                         |
|                                                 | UL                            | UL Listed for Class I, Division 2<br>Group A, B, C, and D Hazardous<br>Locations                                            |
|                                                 | CSA                           | CSA Certified Process Control<br>Equipment                                                                                  |
|                                                 | CSA                           | CSA Certified Process Control<br>Equipment for Class I, Division<br>2 Group A, B, C, and D<br>Hazardous Locations           |
|                                                 | EEX*                          | European Union 94/9/EEC ATEX<br>Directive, compliant with EN<br>50021; Potentially Explosive<br>Atmospheres, Protection "n" |
|                                                 | CE*                           | European Union 89/336/EEC<br>EMC Directive                                                                                  |
|                                                 | C-Tick*                       | Australian Radiocommunications Act, compliant with: AS/NZS 2064, Industrial Emissions                                       |
|                                                 | www.rock                      | roduct Certification link at<br>swellautomation.com for Declarations<br>mity, Certificates and other<br>on details.         |

# **DeviceNet Information**

### **Electronic Data Sheets**

Electronic Data Sheet (EDS) files are simple text files used by network configuration tools such as RSNetWorx (Version 3.0 or later) to help you identify products and easily commission them on a network. The EDS files describe a product's device type, product revision, and configurable parameters on a DeviceNet network.

The EDS files for the XM modules are installed on your computer with the XM configuration software. The latest EDS files can also be obtained at http://www.ab.com/networks/eds/ or by contacting your local Rockwell Automation representative.

Refer to your DeviceNet documentation for instructions on registering the EDS files.

# **Changing Operation Modes**

XM modules operate in two modes.

| Mode    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Run     | The XM measurement modules collect measurement data and monitor each measurement device.  The XM-440 establishes I/O connections with the XM measurement modules in its scan list and monitors their alarms, and controls its own relay outputs accordingly.                                                                                                                                                                                              |  |
| Program | The XM module is idle. The XM measurement modules stop the signal processing/measurement process, and the status of the alarm is set to the disarm state to prevent a false alert or danger status. The XM-440 closes the I/O connections with the XM measurement modules in its scan list and stops monitoring the alarms, relays are deactivated unless they are latched. Configuration parameters can be read, updated and downloade to the XM module. |  |

To change the operation mode of the module, use the Device Mode parameter in the EDS file. Note that the Stop and Start services described on page 105 can also be used to change the operation mode.

**IMPORTANT** 

The XM Serial Configuration Utility software automatically puts XM modules in Program mode and Run mode without user interaction.

### **Transition to Program Mode**

Parameter values can only be downloaded to an XM module while the module is in Program mode. Any attempt to download a parameter value while the module is in Run mode will result in a Device State Conflict error.

To transition an XM module from Run mode to Program mode on a DeviceNet network, set the **Device Mode** parameter to "Program mode" and click **Apply**. Note that you cannot change any other parameter until you have downloaded the Program mode parameter.



The Module Status indicator flashes green when the module is in Program mode.

Refer to your DeviceNet documentation for specific instructions on editing EDS device parameters.



You can also use the Stop service described on page 105 to transition XM modules to Program mode.

### **Transition to Run Mode**

In order to collect data and monitor measurement devices, XM modules must be in Run mode. To transition an XM module from Program mode to Run mode on a DeviceNet network, set the **Device Mode** parameter to "Run mode" and click **Apply**.



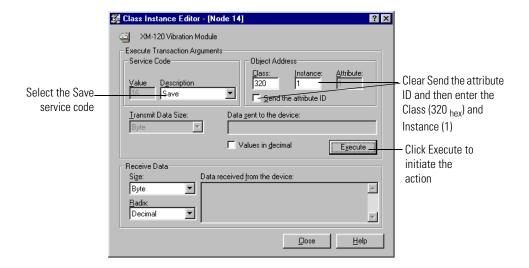
The Module Status indicator is solid green when the module is in Run mode.

Refer to your DeviceNet documentation for specific instructions on editing EDS device parameters.



You can also use the Start service described on page 105 to transition XM modules to Run mode.

# **XM Services**


The table below defines the services supported by the XM modules. The table includes the service codes, classes, instances, and attributes by their appropriate hexadecimal codes. Use the Class Instance Editor in RSNetWorx to execute these services, as illustrated in the example below.

#### **XM Services**

| Action                                                                                                                                                                                    | Service Code<br>(Hex) | Class<br>(Hex)                         | Instance                                                                                                    | Attribute | Data |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|------|
| Transition to Run Mode                                                                                                                                                                    | Start<br>(06)         | Device Mode Object (320)               | 1                                                                                                           | None      | None |
| Transition to Program Mode                                                                                                                                                                | Stop<br>(07)          | Device Mode Object<br>(320)            | 1                                                                                                           | None      | None |
| Save configuration to non-volatile memory (EEPROM)                                                                                                                                        | Save (16)             | Device Mode Object<br>(320)            | 1                                                                                                           | None      | None |
| Delete saved configuration from non-volatile memory (EEPROM)                                                                                                                              | Delete<br>(09)        | Device Mode Object<br>(320)            | 1                                                                                                           | None      | None |
| Reset a specific latched relay                                                                                                                                                            | Reset<br>(05)         | Relay Object<br>(323)                  | Relay number<br>1-C for XM-440,<br>1-5 for XM-12X,<br>XM-320 and<br>XM-220, 1-8 for<br>XM-36X and<br>XM-16X | None      | None |
| Reset all latched relays                                                                                                                                                                  | Reset<br>(05)         | Relay Object<br>(323)                  | 0                                                                                                           | None      | None |
| Reset the Peak Speed (XM-12X only)                                                                                                                                                        | Reset<br>(05)         | Speed Measurement<br>Object<br>(325)   | 1, 2 for XM-220                                                                                             | None      | None |
| Close the virtual setpoint<br>multiplier switch to activate the<br>alarm setpoint multipliers (not<br>applicable to all XM modules)                                                       | Other<br>(33)         | Discrete Input Point<br>Object<br>(08) | 1                                                                                                           | None      | None |
| Open the virtual setpoint<br>multiplier switch to start the<br>setpoint multiplier timers and<br>eventually cancel alarm setpoint<br>multiplication (not applicable to<br>all XM modules) | Other<br>(32)         | Discrete Input Point<br>Object<br>(08) | 1                                                                                                           | None      | None |

### Example

To save the configuration parameters to the non-volatile memory (EEPROM), fill in the Class Instance Editor as shown below.



# **Invalid Configuration Errors**

A Start or Save service request to an XM module may return an Invalid Device Configuration error when there is a conflict amongst the configuration settings.

The general error code for the Invalid Device Configuration error is  $\mathrm{D0}_{\mathrm{hex}}$ . An additional error code is returned with the general error code to specify which configuration settings are invalid. The table below lists the additional error codes associated with the Invalid Device Configuration error.

#### Additional Error Codes returned with the Invalid Device Configuration Error (0xD0)

| Error Code<br>(Hex) | Description                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------|
| 01                  | No specific error information is available.                                                           |
| 02                  | Mismatched transducer, channel, and/or measurement unit.                                              |
| 03                  | Inverted transducer fault high/low values.                                                            |
| 04                  | Alarm thresholds conflict with the alarm condition.                                                   |
| 05                  | Alarm speed range is invalid.                                                                         |
| 06                  | Band minimum frequency is greater than maximum frequency. Or, maximum frequency is greater than FMAX. |
| 07                  | Relay is associated with an alarm that is not enabled.                                                |
| 08                  | Tachometer must be enabled for alarm or channel settings.                                             |
| 09                  | A senseless speed range is enabled on a speed alarm.                                                  |

| Error Code<br>(Hex) | Description                                                                                                 |
|---------------------|-------------------------------------------------------------------------------------------------------------|
| 0A                  | Too many alarms associated with a single measurement.                                                       |
| OB                  | Invalid node address in the alarm list.                                                                     |
| OC                  | Too many alarms in the alarm list. Or, no alarms in the alarm list.                                         |
| OD                  | Alarm levels cannot be zero for alarms that are enabled.                                                    |
| 0E                  | Too many slaves in the scanner's input data table.                                                          |
| OF                  | The FMAX and Number of Lines do not yield correct vector calculations.                                      |
| 10                  | Phase (vector) alarms prohibited with synchronous sampling and more than 1 tachometer pulse per revolution. |
| 11                  | Order-base bands are prohibited on asynchronous channel.                                                    |
| 12                  | Unsupported Sensor Type and Channel ID combination.                                                         |
| 13                  | Invalid Alarm Type for the associated measurement ID.                                                       |
| 14                  | Synchronous sampling is required for alarm on synchronous measurements.                                     |
| 15                  | Integration is not supported with the Bypass High Pass Filter option.                                       |

# XM-122 I/O Message Formats

The XM-122 module supports Poll, Change of State (COS), and Bit-Strobe I/O messages. The Poll response message is used by the XM module to produce measured values, and the COS message is used to produce the Alarm and Relay Status. The Bit-Strobe message is used by a master device to send a trigger event to all the XM slaves on the network.

# **Poll Message Format**

The XM-122 Poll request message contains no data. The Poll response message can contain up to 31 REAL values for a total of 124 bytes of data.

The XM-122 module provides six different pre-defined (static) data formats of the Poll response, as defined in Assembly instance 101–106. It also provides a dynamic Assembly instance, instance 199, with which you can define a custom data format for the Poll response. The dynamic Assembly instance can contain any of the measurement parameters included in Assembly instance 101, as well as several of the alarm and relay configuration parameters.

The default Assembly instance is 101 and the default size is 124 bytes. You can change the Assembly instance and define the custom Assembly instance using the configuration software. Refer to I/O Data Parameters on page 88 for details.

The Poll response data can also be requested explicitly through Assembly Object (Class ID 0x4), Instance 101 (0x65) - 106 (0x6A), Data Attribute (3).

The following tables show the static data format of Assembly instances 101–106.

**XM-122 Assembly Instance 101 Data Format** 

| Byte    | Definition                                      |
|---------|-------------------------------------------------|
| 0–3     | Channel 1 Overall measurement value             |
| 4–7     | Channel 2 Overall measurement value             |
| 8–11    | Channel 1 Gap measurement value                 |
| 12–15   | Channel 2 Gap measurement value                 |
| 16–19   | Current Speed measurement value                 |
| 20–23   | Peak Speed measurement value                    |
| 24–27   | Channel 1 Band 1 measurement value              |
| 28–31   | Channel 2 Band 1 measurement value              |
| 32–35   | Channel 1 Band 2 measurement value              |
| 36–39   | Channel 2 Band 2 measurement value              |
| 40–43   | Channel 1 Band 3 measurement value              |
| 44–47   | Channel 2 Band 3 measurement value              |
| 48–51   | Channel 1 Band 4 measurement value              |
| 52-55   | Channel 2 Band 4 measurement value              |
| 56–59   | Channel 1 1X Vector Magnitude measurement value |
| 60–63   | Channel 1 1X Vector Phase measurement value     |
| 64–67   | Channel 2 1X Vector Magnitude measurement value |
| 68–71   | Channel 2 1X Vector Phase measurement value     |
| 72–75   | Channel 1 2X Vector Magnitude measurement value |
| 76–79   | Channel 1 2X Vector Phase measurement value     |
| 80–83   | Channel 2 2X Vector Magnitude measurement value |
| 84–87   | Channel 2 2X Vector Phase measurement value     |
| 88–91   | Channel 1 3X Vector Magnitude measurement value |
| 92–95   | Channel 2 3X Vector Magnitude measurement value |
| 96–99   | Channel 1 Not 1X measurement value              |
| 100-103 | Channel 2 Not 1X measurement value              |
| 104–107 | Channel 1 gSE Overall measurement value         |
| 108–111 | Channel 2 gSE Overall measurement value         |
| 112–115 | Channel 1 Sum Harmonics measurement value       |
| 116–119 | Channel 2 Sum Harmonics measurement value       |
| 120–123 | Acceleration measurement value                  |

### XM-122 Assembly Instance 102 Data Format

| Byte    | Definition                                      |
|---------|-------------------------------------------------|
| 0–3     | Current Speed measurement value                 |
| 4–7     | Channel 1 Overall measurement value             |
| 8–11    | Channel 1 gSE Overall measurement value         |
| 12–15   | Channel 1 Band 1 measurement value              |
| 16–19   | Channel 1 Band 2 measurement value              |
| 20–23   | Channel 1 1X Vector Magnitude measurement value |
| 24–27   | Channel 1 2X Vector Magnitude measurement value |
| 28–31   | Channel 1 3X Vector Magnitude measurement value |
| 32–35   | Channel 1 Band 3 measurement value              |
| 36–39   | Channel 1 Band 4 measurement value              |
| 40–43   | Channel 1 1X Vector Phase measurement value     |
| 44–47   | Channel 1 2X Vector Phase measurement value     |
| 48–51   | Channel 1 Gap measurement value                 |
| 52-55   | Channel 1 Not 1X measurement value              |
| 56-59   | Channel 1 Sum Harmonics measurement value       |
| 60–63   | Acceleration measurement value                  |
| 64–67   | Channel 2 Overall measurement value             |
| 68–71   | Channel 2 gSE Overall measurement value         |
| 72–75   | Channel 2 Band 1 measurement value              |
| 76–79   | Channel 2 Band 2 measurement value              |
| 80–83   | Channel 2 1X Vector Magnitude measurement value |
| 84–87   | Channel 2 2X Vector Magnitude measurement value |
| 88–91   | Channel 2 3X Vector Magnitude measurement value |
| 92–95   | Channel 2 Band 3 measurement value              |
| 96–99   | Channel 2 Band 4 measurement value              |
| 100–103 | Channel 2 1X Vector Phase measurement value     |
| 104–107 | Channel 2 2X Vector Phase measurement value     |
| 108–111 | Channel 2 Gap measurement value                 |
| 112–115 | Channel 2 Not 1X measurement value              |
| 116–119 | Channel 2 Sum Harmonics measurement value       |
| 120–123 | Peak Speed measurement value                    |

XM-122 Assembly Instance 103 Data Format

| 0-3 Channel 1 Band 1 measurement value 4-7 Channel 2 Band 1 measurement value 8-11 Channel 1 Band 2 measurement value 12-15 Channel 1 Overall measurement value 16-19 Channel 1 Overall measurement value 20-23 Channel 2 Overall measurement value 24-27 Channel 1 Band 3 measurement value 28-31 Channel 2 Band 3 measurement value 32-35 Channel 1 Band 4 measurement value 36-39 Channel 2 Band 4 measurement value 40-43 Channel 1 Gap measurement value 44-47 Channel 2 Gap measurement value 48-51 Channel 1 gSE Overall measurement value 52-55 Channel 2 gSE Overall measurement value 56-59 Channel 1 Sum Harmonics measurement value 68-67 Channel 1 Not 1X measurement value 68-71 Channel 1 Not 1X measurement value 68-71 Channel 2 Not 1X measurement value 76-79 Channel 1 1X Vector Phase measurement value 80-83 Channel 2 1X Vector Phase measurement value 84-87 Channel 1 1X Vector Phase measurement value 84-87 Channel 1 1X Vector Magnitude measurement value 95-95 Channel 1 1X Vector Magnitude measurement value 96-99 Channel 1 2X Vector Magnitude measurement value 96-99 Channel 1 2X Vector Magnitude measurement value 100-103 Channel 2 2X Vector Magnitude measurement value 104-107 Channel 1 3X Vector Magnitude measurement value 104-107 Channel 2 3X Vector Magnitude measurement value 104-107 Channel 2 3X Vector Magnitude measurement value 105-115 Current Speed measurement value 116-119 Peak Speed measurement value | Byte    | Definition                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------|
| 8-11 Channel 1 Band 2 measurement value  12-15 Channel 2 Band 2 measurement value  16-19 Channel 1 Overall measurement value  20-23 Channel 2 Overall measurement value  24-27 Channel 1 Band 3 measurement value  28-31 Channel 2 Band 3 measurement value  32-35 Channel 1 Band 4 measurement value  36-39 Channel 2 Band 4 measurement value  40-43 Channel 1 Gap measurement value  44-47 Channel 2 Gap measurement value  52-55 Channel 1 Sys Overall measurement value  52-55 Channel 1 Sys Overall measurement value  60-63 Channel 2 Sys Overall measurement value  64-67 Channel 1 Not 1X measurement value  64-67 Channel 1 Not 1X measurement value  68-71 Channel 2 Not 1X measurement value  72-75 Channel 1 1X Vector Phase measurement value  80-83 Channel 1 2X Vector Phase measurement value  84-87 Channel 2 2X Vector Phase measurement value  84-87 Channel 1 1X Vector Phase measurement value  92-95 Channel 2 1X Vector Magnitude measurement value  96-99 Channel 1 2X Vector Magnitude measurement value  100-103 Channel 2 2X Vector Magnitude measurement value  100-103 Channel 2 3X Vector Magnitude measurement value  100-107 Channel 2 3X Vector Magnitude measurement value  100-115 Current Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                        | 0–3     | Channel 1 Band 1 measurement value              |
| 12–15 Channel 2 Band 2 measurement value 20–23 Channel 1 Overall measurement value 20–23 Channel 2 Overall measurement value 24–27 Channel 1 Band 3 measurement value 28–31 Channel 2 Band 3 measurement value 32–35 Channel 1 Band 4 measurement value 36–39 Channel 2 Band 4 measurement value 40–43 Channel 1 Gap measurement value 44–47 Channel 2 Gap measurement value 52–55 Channel 1 gSE Overall measurement value 52–55 Channel 2 Sub Overall measurement value 60–63 Channel 1 Sum Harmonics measurement value 60–63 Channel 1 Not 1X measurement value 68–71 Channel 1 Not 1X measurement value 72–75 Channel 1 1 X Vector Phase measurement value 80–83 Channel 2 1X Vector Phase measurement value 84–87 Channel 2 1X Vector Phase measurement value 84–87 Channel 1 2X Vector Phase measurement value 85–99 Channel 1 1X Vector Magnitude measurement value 86–99 Channel 2 1X Vector Magnitude measurement value 92–95 Channel 2 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 100–107 Channel 1 3X Vector Magnitude measurement value 104–107 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value                                                                                                                                                                                                                                                                                                                                                                 | 4–7     | Channel 2 Band 1 measurement value              |
| 16–19 Channel 1 Overall measurement value 20–23 Channel 2 Overall measurement value 24–27 Channel 1 Band 3 measurement value 28–31 Channel 2 Band 3 measurement value 32–35 Channel 1 Band 4 measurement value 36–39 Channel 2 Band 4 measurement value 40–43 Channel 1 Gap measurement value 44–47 Channel 2 Gap measurement value 48–51 Channel 1 gSE Overall measurement value 52–55 Channel 2 gSE Overall measurement value 56–59 Channel 1 Sum Harmonics measurement value 60–63 Channel 2 Sum Harmonics measurement value 68–71 Channel 1 Not 1X measurement value 68–71 Channel 2 Not 1X measurement value 72–75 Channel 1 1X Vector Phase measurement value 80–83 Channel 2 2 X Vector Phase measurement value 84–87 Channel 1 2X Vector Phase measurement value 84–87 Channel 1 2X Vector Phase measurement value 86–99 Channel 2 1X Vector Magnitude measurement value 96–99 Channel 2 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 104–107 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8–11    | Channel 1 Band 2 measurement value              |
| 20–23 Channel 2 Overall measurement value 24–27 Channel 1 Band 3 measurement value 28–31 Channel 2 Band 3 measurement value 32–35 Channel 1 Band 4 measurement value 36–39 Channel 2 Band 4 measurement value 40–43 Channel 1 Gap measurement value 44–47 Channel 2 Gap measurement value 48–51 Channel 1 gSE Overall measurement value 52–55 Channel 2 gSE Overall measurement value 56–59 Channel 1 Sum Harmonics measurement value 60–63 Channel 2 Sum Harmonics measurement value 64–67 Channel 1 Not 1X measurement value 68–71 Channel 2 Not 1X measurement value 72–75 Channel 1 1X Vector Phase measurement value 80–83 Channel 2 1X Vector Phase measurement value 88–81 Channel 1 2X Vector Phase measurement value 88–91 Channel 1 1X Vector Magnitude measurement value 92–95 Channel 1 1X Vector Magnitude measurement value 96–99 Channel 1 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12–15   | Channel 2 Band 2 measurement value              |
| 24–27 Channel 1 Band 3 measurement value 28–31 Channel 2 Band 3 measurement value 32–35 Channel 1 Band 4 measurement value 36–39 Channel 2 Band 4 measurement value 40–43 Channel 1 Gap measurement value 44–47 Channel 2 Gap measurement value 48–51 Channel 1 gSE Overall measurement value 52–55 Channel 2 gSE Overall measurement value 56–59 Channel 1 Sum Harmonics measurement value 60–63 Channel 2 Sum Harmonics measurement value 64–67 Channel 1 Not 1X measurement value 68–71 Channel 2 Not 1X measurement value 72–75 Channel 1 1X Vector Phase measurement value 80–83 Channel 2 1X Vector Phase measurement value 80–83 Channel 1 2X Vector Phase measurement value 84–87 Channel 1 1X Vector Phase measurement value 88–91 Channel 1 1X Vector Magnitude measurement value 92–95 Channel 1 1X Vector Magnitude measurement value 96–99 Channel 1 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16–19   | Channel 1 Overall measurement value             |
| 28–31 Channel 2 Band 3 measurement value 32–35 Channel 1 Band 4 measurement value 36–39 Channel 2 Band 4 measurement value 40–43 Channel 1 Gap measurement value 44–47 Channel 2 Gap measurement value 48–51 Channel 1 gSE Overall measurement value 52–55 Channel 2 gSE Overall measurement value 56–59 Channel 1 Sum Harmonics measurement value 60–63 Channel 2 Sum Harmonics measurement value 64–67 Channel 1 Not 1X measurement value 68–71 Channel 2 Not 1X measurement value 72–75 Channel 1 1X Vector Phase measurement value 76–79 Channel 2 1X Vector Phase measurement value 80–83 Channel 1 2X Vector Phase measurement value 84–87 Channel 2 2X Vector Phase measurement value 88–91 Channel 1 1X Vector Magnitude measurement value 92–95 Channel 2 1X Vector Magnitude measurement value 96–99 Channel 1 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20–23   | Channel 2 Overall measurement value             |
| Channel 1 Band 4 measurement value  36–39 Channel 2 Band 4 measurement value  40–43 Channel 1 Gap measurement value  44–47 Channel 2 Gap measurement value  48–51 Channel 1 gSE Overall measurement value  52–55 Channel 2 gSE Overall measurement value  56–59 Channel 1 Sum Harmonics measurement value  60–63 Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 1 2X Vector Phase measurement value  84–87 Channel 1 1X Vector Magnitude measurement value  96–99 Channel 1 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24–27   | Channel 1 Band 3 measurement value              |
| Channel 2 Band 4 measurement value  40–43 Channel 1 Gap measurement value  44–47 Channel 2 Gap measurement value  48–51 Channel 1 gSE Overall measurement value  52–55 Channel 2 gSE Overall measurement value  56–59 Channel 1 Sum Harmonics measurement value  60–63 Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 1 1X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  100–103 Channel 2 3X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28–31   | Channel 2 Band 3 measurement value              |
| 40–43 Channel 1 Gap measurement value  44–47 Channel 2 Gap measurement value  48–51 Channel 1 gSE Overall measurement value  52–55 Channel 2 gSE Overall measurement value  56–59 Channel 1 Sum Harmonics measurement value  60–63 Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  104–107 Channel 2 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32–35   | Channel 1 Band 4 measurement value              |
| Channel 2 Gap measurement value  48–51 Channel 1 gSE Overall measurement value  52–55 Channel 2 gSE Overall measurement value  60–63 Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 2 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36–39   | Channel 2 Band 4 measurement value              |
| Channel 1 gSE Overall measurement value  52–55 Channel 2 gSE Overall measurement value  56–59 Channel 1 Sum Harmonics measurement value  60–63 Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40–43   | Channel 1 Gap measurement value                 |
| 52–55 Channel 2 gSE Overall measurement value 56–59 Channel 1 Sum Harmonics measurement value 60–63 Channel 2 Sum Harmonics measurement value 64–67 Channel 1 Not 1X measurement value 68–71 Channel 2 Not 1X measurement value 72–75 Channel 1 1X Vector Phase measurement value 76–79 Channel 2 1X Vector Phase measurement value 80–83 Channel 1 2X Vector Phase measurement value 84–87 Channel 2 2X Vector Phase measurement value 88–91 Channel 1 1X Vector Magnitude measurement value 92–95 Channel 2 1X Vector Magnitude measurement value 96–99 Channel 1 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44–47   | Channel 2 Gap measurement value                 |
| Channel 1 Sum Harmonics measurement value  60–63 Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48–51   | Channel 1 gSE Overall measurement value         |
| Channel 2 Sum Harmonics measurement value  64–67 Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52–55   | Channel 2 gSE Overall measurement value         |
| Channel 1 Not 1X measurement value  68–71 Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56–59   | Channel 1 Sum Harmonics measurement value       |
| Channel 2 Not 1X measurement value  72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60–63   | Channel 2 Sum Harmonics measurement value       |
| 72–75 Channel 1 1X Vector Phase measurement value  76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64–67   | Channel 1 Not 1X measurement value              |
| 76–79 Channel 2 1X Vector Phase measurement value  80–83 Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68–71   | Channel 2 Not 1X measurement value              |
| Channel 1 2X Vector Phase measurement value  84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72–75   | Channel 1 1X Vector Phase measurement value     |
| 84–87 Channel 2 2X Vector Phase measurement value  88–91 Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76–79   | Channel 2 1X Vector Phase measurement value     |
| Channel 1 1X Vector Magnitude measurement value  92–95 Channel 2 1X Vector Magnitude measurement value  96–99 Channel 1 2X Vector Magnitude measurement value  100–103 Channel 2 2X Vector Magnitude measurement value  104–107 Channel 1 3X Vector Magnitude measurement value  108–111 Channel 2 3X Vector Magnitude measurement value  112–115 Current Speed measurement value  116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80–83   | Channel 1 2X Vector Phase measurement value     |
| 92–95 Channel 2 1X Vector Magnitude measurement value 96–99 Channel 1 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84–87   | Channel 2 2X Vector Phase measurement value     |
| 96–99 Channel 1 2X Vector Magnitude measurement value 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88–91   | Channel 1 1X Vector Magnitude measurement value |
| 100–103 Channel 2 2X Vector Magnitude measurement value 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92–95   | Channel 2 1X Vector Magnitude measurement value |
| 104–107 Channel 1 3X Vector Magnitude measurement value 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96–99   | Channel 1 2X Vector Magnitude measurement value |
| 108–111 Channel 2 3X Vector Magnitude measurement value 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100-103 | Channel 2 2X Vector Magnitude measurement value |
| 112–115 Current Speed measurement value 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104–107 | Channel 1 3X Vector Magnitude measurement value |
| 116–119 Peak Speed measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108–111 | Channel 2 3X Vector Magnitude measurement value |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112–115 | Current Speed measurement value                 |
| 120–123 Acceleration measurement value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116–119 | Peak Speed measurement value                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120–123 | Acceleration measurement value                  |

### XM-122 Assembly Instance 104 Data Format

| Byte    | Definition                                      |  |  |
|---------|-------------------------------------------------|--|--|
| 0–3     | Acceleration measurement value                  |  |  |
| 4–7     | Current Speed measurement value                 |  |  |
| 8–11    | Channel 1 Overall measurement value             |  |  |
| 12–15   | Channel 2 Overall measurement value             |  |  |
| 16–19   | Channel 1 1X Vector Magnitude measurement value |  |  |
| 20–23   | Channel 2 1X Vector Magnitude measurement value |  |  |
| 24–27   | Channel 1 Gap measurement value                 |  |  |
| 28–31   | Channel 2 Gap measurement value                 |  |  |
| 32–35   | Channel 1 2X Vector Magnitude measurement value |  |  |
| 36–39   | Channel 2 2X Vector Magnitude measurement value |  |  |
| 40–43   | Channel 1 1X Vector Phase measurement value     |  |  |
| 44–47   | Channel 2 1X Vector Phase measurement value     |  |  |
| 48–51   | Channel 1 Band 1 measurement value              |  |  |
| 52-55   | Channel 2 Band 1 measurement value              |  |  |
| 56-59   | Channel 1 Band 2 measurement value              |  |  |
| 60–63   | Channel 2 Band 2 measurement value              |  |  |
| 64–67   | Channel 1 Not 1X measurement value              |  |  |
| 68–71   | Channel 2 Not 1X measurement value              |  |  |
| 72–75   | Channel 1 Band 3 measurement value              |  |  |
| 76–79   | Channel 2 Band 3 measurement value              |  |  |
| 80–83   | Channel 1 Band 4 measurement value              |  |  |
| 84–87   | Channel 2 Band 4 measurement value              |  |  |
| 88–91   | Channel 1 gSE Overall measurement value         |  |  |
| 92–95   | Channel 2 gSE Overall measurement value         |  |  |
| 96–99   | Channel 1 3X Vector Magnitude measurement value |  |  |
| 100–103 | Channel 2 3X Vector Magnitude measurement value |  |  |
| 104–107 | Channel 1 2X Vector Phase measurement value     |  |  |
| 108–111 | Channel 2 2X Vector Phase measurement value     |  |  |
| 112–115 | Channel 1 Sum Harmonics measurement value       |  |  |
| 116–119 | Channel 2 Sum Harmonics measurement value       |  |  |
| 120–123 | Peak Speed measurement value                    |  |  |

XM-122 Assembly Instance 105 Data Format

| Byte    | Definition                                      |
|---------|-------------------------------------------------|
| 0–3     | Channel 1 gSE Overall measurement value         |
| 4–7     | Channel 2 gSE Overall measurement value         |
| 8–11    | Channel 1 Overall measurement value             |
| 12–15   | Channel 2 Overall measurement value             |
| 16–19   | Current Speed measurement value                 |
| 20–23   | Acceleration measurement value                  |
| 24–27   | Channel 1 1X Vector Magnitude measurement value |
| 28–31   | Channel 2 1X Vector Magnitude measurement value |
| 32–35   | Channel 1 2X Vector Magnitude measurement value |
| 36–39   | Channel 2 2X Vector Magnitude measurement value |
| 40–43   | Channel 1 Band 1 measurement value              |
| 44–47   | Channel 2 Band 1 measurement value              |
| 48–51   | Channel 1 Band 2 measurement value              |
| 52–55   | Channel 2 Band 2 measurement value              |
| 56–59   | Channel 1 Band 3 measurement value              |
| 60–63   | Channel 2 Band 3 measurement value              |
| 64–67   | Channel 1 Band 4 measurement value              |
| 68–71   | Channel 2 Band 4 measurement value              |
| 72–75   | Channel 1 3X Vector Magnitude measurement value |
| 76–79   | Channel 2 3X Vector Magnitude measurement value |
| 80–83   | Channel 1 1X Vector Phase measurement value     |
| 84–87   | Channel 2 1X Vector Phase measurement value     |
| 88–91   | Channel 1 Not 1X measurement value              |
| 92–95   | Channel 2 Not 1X measurement value              |
| 96–99   | Channel 1 Sum Harmonics measurement value       |
| 100–103 | Channel 2 Sum Harmonics measurement value       |
| 104–107 | Channel 1 2X Vector Phase measurement value     |
| 108–111 | Channel 2 2X Vector Phase measurement value     |
| 112–115 | Peak Speed measurement value                    |
| 116–119 | Channel 1 Gap measurement value                 |
| 120–123 | Channel 2 Gap measurement value                 |

### XM-122 Assembly Instance 106 Data Format

| Byte    | Definition                                      |
|---------|-------------------------------------------------|
| 0–3     | Channel 1 1X Vector Magnitude measurement value |
| 4–7     | Channel 2 1X Vector Magnitude measurement value |
| 8–11    | Channel 1 2X Vector Magnitude measurement value |
| 12–15   | Channel 2 2X Vector Magnitude measurement value |
| 16–19   | Current Speed measurement value                 |
| 20–23   | Channel 1 Overall measurement value             |
| 24–27   | Channel 2 Overall measurement value             |
| 28–31   | Channel 1 Band 1 measurement value              |
| 32–35   | Channel 2 Band 1 measurement value              |
| 36–39   | Channel 1 Band 2 measurement value              |
| 40–43   | Channel 2 Band 2 measurement value              |
| 44–47   | Channel 1 Band 3 measurement value              |
| 48–51   | Channel 2 Band 3 measurement value              |
| 52–55   | Channel 1 Band 4 measurement value              |
| 56–59   | Channel 2 Band 4 measurement value              |
| 60–63   | Channel 1 Sum Harmonics measurement value       |
| 64–67   | Channel 2 Sum Harmonics measurement value       |
| 68–71   | Channel 1 Not 1X measurement value              |
| 72–75   | Channel 2 Not 1X measurement value              |
| 76–79   | Channel 1 1X Vector Phase measurement value     |
| 80–83   | Channel 2 1X Vector Phase measurement value     |
| 84–87   | Channel 1 2X Vector Phase measurement value     |
| 88–91   | Channel 2 2X Vector Phase measurement value     |
| 92–95   | Channel 1 3X Vector Magnitude measurement value |
| 96–99   | Channel 2 3X Vector Magnitude measurement value |
| 100–103 | Channel 1 Gap measurement value                 |
| 104–107 | Channel 2 Gap measurement value                 |
| 108–111 | Peak Speed measurement value                    |
| 112–115 | Channel 1 gSE Overall measurement value         |
| 116–119 | Channel 2 gSE Overall measurement value         |
| 120–123 | Acceleration measurement value                  |

## **COS Message Format**

The XM-122 COS message contains eight bytes of data as defined in the table below. The COS data can also be requested explicitly through Assembly Object (Class ID 0x4), Instance 100 (0x64), Data Attribute (3).

### XM-122 COS Message Format

| Byte | Bit 7             | Bit 6                            | Bit 5           | Bit 4          | Bit 3 | Bit 2          | Bit 1          | Bit 0 |
|------|-------------------|----------------------------------|-----------------|----------------|-------|----------------|----------------|-------|
| 0    | Relay 1<br>Status | Setpoint<br>Multiplier<br>Status |                 | Alarm 2 Stat   | rus   |                | Alarm 1 Statu  | s     |
| 1    | Relay 2<br>Status | Reserved                         |                 | Alarm 4 Status |       |                | Alarm 3 Statu  | S     |
| 2    | Relay 3<br>Status | Reserved                         | Alarm 6 Status  |                |       | Alarm 5 Statu  | S              |       |
| 3    | Relay 4<br>Status | Reserved                         | Alarm 8 Status  |                |       | Alarm 7 Statu  | S              |       |
| 4    | Relay 5<br>Status | Reserved                         | Alarm 10 Status |                |       | Alarm 9 Statu  | S              |       |
| 5    | Reserved          | Reserved                         |                 | Alarm 12 Sta   | tus   |                | Alarm 11 Stati | JS    |
| 6    | Reserved          | Reserved                         | Alarm 14 Status |                |       | Alarm 13 Stati | JS             |       |
| 7    | Reserved          | Reserved                         |                 | Alarm 16 Sta   | tus   |                | Alarm 15 Statu | JS    |

### XM Status Values

The following tables describe the XM Status values that are included in the COS messages.

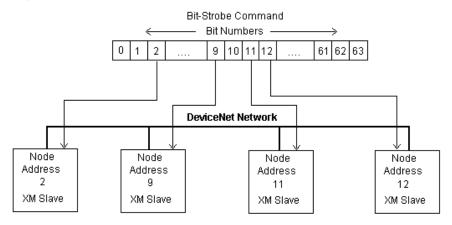
### **Alarm Status Descriptions**

| Alarm Status Value | Description                   |
|--------------------|-------------------------------|
| 0                  | Normal                        |
| 1                  | Alert                         |
| 2                  | Danger                        |
| 3                  | Disarm                        |
| 4                  | Transducer Fault (Sensor OOR) |
| 5                  | Module Fault                  |
| 6                  | Tachometer Fault              |
| 7                  | Reserved                      |

### **Setpoint Multiplier Status Descriptions**

| Setpoint Multiplier Status Value | Description   |
|----------------------------------|---------------|
| 0                                | Not Activated |
| 1                                | Activated     |

### **Relay Status Descriptions**


| Relay Status Value | Description   |
|--------------------|---------------|
| 0                  | Not Activated |
| 1                  | Activated     |

### **Bit-Strobe Message Format**

The Bit-Strobe command sends one bit of output data to each XM slave whose node address appears in the master's scanlist.

The Bit-Strobe command message contains a bit string of 64 bits (8 bytes) of output data, one output bit per node address on the network. One bit is assigned to each node address supported on the network (0...63) as shown in Figure B.1.

Figure B.1 Bit-Strobe Command



The XM modules use the bit received in a Bit-Strobe connection as a trigger event. When the bit number corresponding to the XM module's node address is set, the XM module will collect the triggered trend data.

Note that the XM modules do not send data in the Bit-Strobe response.

### **ADR for XM Modules**

Automatic Device Replacement (ADR) is a feature of an Allen-Bradley DeviceNet scanner. It provides a means for replacing a failed device with a new unit, and having the device configuration data set automatically. Upon replacing a failed device with a new unit, the ADR scanner automatically downloads the configuration data and sets the node address.

#### **IMPORTANT**

It is recommended that ADR not be used in safety related applications. If the failure of the ADR server, and a subsequent power cycle, would result in the loss of protection for a machine, then ADR should not be implemented.

ADR can be used with XM modules but keep the following in mind when setting up the XM modules.

• The ADR scanner can not download the configuration data to an XM module if the module has a saved configuration in its non-volatile memory. This happens because the saved configuration is restored and the module enters Run mode when the power is cycled. (Configuration parameters cannot be downloaded while an XM module is in Run mode.) XM modules must be in Program mode for the ADR configuration to be downloaded and this occurs only when there is no saved configuration.

#### TIP

To delete a saved configuration from non-volatile memory, use the Delete service in RSNetWorx for DeviceNet or perform the following steps in the XM Serial Configuration Utility.

- Save the current configuration to a file. From the File menu, click Save As and enter a file name for the configuration.
- 2. Reset the module to factory defaults. Click the **Module** tab and click the **Reset** button.
- **3.** Reload the saved configuration. From the **File** menu, click **Open** and select the configuration file.
- Make certain to disable auto save. From the Device menu, clear the Auto Save Configuration check mark.
- An XM module will enter Run mode automatically after the ADR scanner restores the module's configuration only if the module is in Run mode at the time the configuration is saved to the scanner. If the module is in Program mode when the configuration is saved, then the module will remain in Program mode after the configuration is downloaded by the ADR scanner.

• The ADR scanner saves and restores only the configuration parameters contained in the module's EDS file. Some XM parameters are not included in the EDS file because they are not supported by either the EDS specification or the tools that read the EDS files, for example RSNetWorx for DeviceNet. These configuration parameters will not be restored with ADR.

Below is a list of the configuration parameters that are not included in the EDS file and can not be saved or restored with ADR.

- Channel Name
- Tachometer Name
- Alarm Name
- Relay Name
- All Triggered Trend related parameters (see page 83)
- All SU/CD Trend related parameters (see page 85)
- Custom Assembly structure (see page 88)
- The ADR and trigger group functions cannot be used together. A module can have only one primary master so a module cannot be both configured for ADR and included in a trigger group. The ADR scanner must be the primary master for the modules configured for ADR. The XM-440 Master Relay module must be the primary master for modules included in a trigger group.

# **DeviceNet Objects**

Appendix C provides information on the DeviceNet objects supported by the XM-122 module.

| For information about                                | See page |
|------------------------------------------------------|----------|
| Identity Object (Class ID 01H)                       | 120      |
| DeviceNet Object (Class ID 03H)                      | 122      |
| Assembly Object (Class ID 04H)                       | 123      |
| Connection Object (Class ID 05H)                     | 133      |
| Discrete Input Point Object (Class ID 08H)           | 135      |
| Analog Input Point (Class ID 0AH)                    | 136      |
| Parameter Object (Class ID 0FH)                      | 138      |
| Acknowledge Handler Object (Class ID 2BH)            | 147      |
| Alarm Object (Class ID 31DH)                         | 148      |
| Band Measurement Object (Class ID 31EH)              | 151      |
| Channel Object (Class ID 31FH)                       | 153      |
| Device Mode Object (Class ID 320H)                   | 156      |
| Overall Measurement Object (Class ID 322H)           | 158      |
| Relay Object (Class ID 323H)                         | 161      |
| Spectrum Waveform Measurement Object (Class ID 324H) | 163      |
| Speed Measurement Object (Class ID 325H)             | 170      |
| Tachometer Channel Object (Class ID 326H)            | 171      |
| Transducer Object (Class ID 328H)                    | 173      |
| Vector Measurement Object (Class ID 329H)            | 174      |
| 4-20 mA Output Object (Class ID 32AH)                | 176      |

TIP

Refer to the DeviceNet specification for more information about DeviceNet objects. Information about the DeviceNet specification is available on the ODVA web site (http://www.odva.org).

# Identity Object (Class ID 01<sub>H</sub>)

The Identity Object provides identification and general information about the device.

### **Class Attributes**

The Identity Object provides no class attributes.

## **Instance Attributes**

**Table C.1 Identity Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                        | Data Type                   | Default Value                                                                       |
|---------|----------------|-----------------------------|-----------------------------|-------------------------------------------------------------------------------------|
| 1       | Get            | Vendor ID                   | UINT                        | 668 = Entek                                                                         |
| 2       | Get            | Device Type                 | UINT                        | 109 (Specialty I/O)                                                                 |
| 3       | Get            | Product Code                | UINT                        | 18 (0x12)                                                                           |
| 4       | Get            | Revision:<br>Major<br>Minor | STRUCT OF<br>USINT<br>USINT | Value varies with each firmware revision. Value varies with each firmware revision. |
| 5       | Get            | Status                      | WORD                        |                                                                                     |
| 6       | Get            | Serial Number               | UDINT                       |                                                                                     |
| 7       | Get            | Product Name                | SHORT_<br>STRING            | "XM-122 gSE Vibration Module"                                                       |

### **Status**

The **Status** is a 16 bit value. The following bits are implemented.

**Table C.2 Identity Object Status** 

| Bit | Name       | Description                                                                                                                                                                   |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Owned      | TRUE indicates that the module has an owner. More specifically, the Predefined Master/Slave Connection Set has been allocated to a master.                                    |
| 1   |            | Reserved, set to 0                                                                                                                                                            |
| 2   | Configured | This bit is set whenever a saved configuration is successfully loaded from non-volatile memory. This bit is cleared whenever the default configuration is restored or loaded. |
| 3   |            | Reserved, set to 0                                                                                                                                                            |

**Table C.2 Identity Object Status** 

| Bit     | Name                         | Description                                                                                                                                                                                    |
|---------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4       | Boot Program                 | Vendor-specific, indicates that the boot program is running. The Main Application must be corrupt or missing.                                                                                  |
| 5 - 7   |                              | Vendor-specific, not implemented                                                                                                                                                               |
| 8       | Minor Recoverable<br>Fault   | Set whenever there is a transducer or tachometer fault.                                                                                                                                        |
| 9       | Minor Unrecoverable<br>Fault | Not implemented                                                                                                                                                                                |
| 10      | Major Recoverable<br>Fault   | Set when the module detects a major problem that the user may be able to recover from. The Module Status LED will flash red. An example of this condition is when the boot program is running. |
| 11      | Major Unrecoverable<br>Fault | Set when there is a module status fault (Module Status LED is solid red).                                                                                                                      |
| 12 - 15 |                              | Reserved, set to 0                                                                                                                                                                             |

# **Services**

**Table C.3 Identity Object Services** 

| Service<br>Code | Class/Instance Usage | Name                              |
|-----------------|----------------------|-----------------------------------|
| 01 <sub>h</sub> | Instance             | Get_Attributes_All                |
| 05 <sub>h</sub> | Instance             | Reset                             |
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single              |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# DeviceNet Object (Class ID 03<sub>H</sub>)

The DeviceNet Object is used to provide the configuration and status of a physical attachment to DeviceNet.

### **Class Attributes**

**Table C.4 DeviceNet Object Class Attributes** 

| Attr ID | Access<br>Rule | Name     | Data Type | Default Value |
|---------|----------------|----------|-----------|---------------|
| 1       | Get            | Revision | UINT      | 2             |

### **Instance Attributes**

**Table C.5 DeviceNet Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                   | Data Type                  | Default Value                              |
|---------|----------------|------------------------|----------------------------|--------------------------------------------|
| 1       | Get/Set        | MAC ID <sup>1</sup>    | USINT                      | 63                                         |
| 2       | Get/Set        | Baud Rate <sup>2</sup> | USINT                      | 0                                          |
| 3       | Get            | Bus-Off Interrupt      | BOOL                       | 0                                          |
| 4       | Get/Set        | Bus-Off Counter        | USINT                      | 0                                          |
| 5       | Get            | Allocation Information | STRUCT of<br>BYTE<br>USINT | 0 255                                      |
| 100     | Get/Set        | Autobaud Disable       | BOOL                       | 0 (Ignore attribute 2 and always autobaud) |

- 1 Setting the MAC ID causes the device to reset automatically, after which it will go online with the new MAC ID
- 2 The Baud Rate setting can not be set while **Autobaud Disable** is equal to 0. Applying the Baud Rate does not occur until the Reset service to the Identity Object.

The MAC ID, Baud Rate, and Autobaud Disable settings are stored in non-volatile memory so they do not reset to the default with each power cycle. The Baud Rate attribute supports the following settings:

- 0 = 125 kbps
- 1 = 250 kbps
- 2 = 500 kbps

The **Baud Rate** setting is used only when automatic baud rate detection is disabled (**Autobaud Disable** = 1). When **Autobaud Disable** is set to zero (0), the module ignores its **Baud Rate** setting and performs automatic baud

rate detection instead. This means that the module will determine the network baud rate by listening for network traffic before attempting to go online.

### **Services**

**Table C.6 DeviceNet Object Services** 

| Service<br>Code | Class/Instance Usage | Name                                |
|-----------------|----------------------|-------------------------------------|
| 0E <sub>h</sub> | Class/Instance       | Get_Attribute_Single                |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single <sup>1</sup>   |
| 4B <sub>h</sub> | Instance             | Allocate_Master/Slave_Connetion_Set |
| 4C <sub>h</sub> | Instance             | Release_Group_2_Identifier_Set      |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Assembly Object (Class ID 04<sub>H</sub>)

The Assembly Object binds attributes of multiple objects to allow data to or from each object to be sent or received in a single message.

The XM-122 module provides both static and dynamic assemblies.

### **Class Attribute**

**Table C.7 Assembly Object Class Attributes** 

| Attr ID | Access<br>Rule | Name     | Data Type | Description                         | Semantics |
|---------|----------------|----------|-----------|-------------------------------------|-----------|
| 1       | Get            | Revision | UINT      | Revision of the implemented object. | 2         |

### **Instances**

**Table C.8 Assembly Object Instances** 

| Instance | Name                | Туре  | Description                   |
|----------|---------------------|-------|-------------------------------|
| 100      | Default COS Message | Input | Alarm and Relay Status values |

**Table C.8 Assembly Object Instances** 

| Instance  | Name                                       | Туре  | Description                                                       |
|-----------|--------------------------------------------|-------|-------------------------------------------------------------------|
| 101       | Default Poll Response<br>Message           | Input | Measurement values                                                |
| 102 - 106 | Alternate Poll Response<br>Message         | Input | Measurement values                                                |
| 199       | Alternate Dynamic Poll<br>Response Message | Input | User configurable measurement values and configuration parameters |

### **Instance Attributes**

**Table C.9 Assembly Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                      | Data Type                                 | Value                                        |
|---------|----------------|---------------------------|-------------------------------------------|----------------------------------------------|
| 1       | Get            | Number of Members in list | UINT                                      | Only supported for Dynamic Assembly instance |
| 2       | Set            | Member List               | Array of STRUCT:                          | Only supported for Dynamic Assembly instance |
|         |                | Member Data Description   | UINT                                      | Size of member data value in bits            |
|         |                | Member Path Size          | UINT                                      |                                              |
|         |                | Member Path               | Packed EPATH                              |                                              |
| 3       | Get            | Data                      | Defined in tables on the following pages. |                                              |

# **Assembly Instance Attribute Data Format**

Instance 100 - Alarm and Relay Status

This assembly is sent using COS messaging when any of the Alarm or Relay Status values change.

Table C.10 Instance 100 Data Format (Alarm and Relay Status Values Assembly)

| Byte | Bit 7             | Bit 6                   | Bit 5                         | Bit 4          | Bit 3 | Bit 2 | Bit 1                       | Bit 0 |                |  |   |
|------|-------------------|-------------------------|-------------------------------|----------------|-------|-------|-----------------------------|-------|----------------|--|---|
| 0    | Relay 1<br>Status | Set Point<br>Multiplier | Alarm 2 Status Alarm 1 Status |                |       |       | Alarm 2 Status Alarm 1 Stat |       | Alarm 2 Status |  | S |
| 1    | Relay 2<br>Status | 0                       |                               | Alarm 4 Status |       |       | Alarm 3 Statu               | S     |                |  |   |
| 2    | Relay 3<br>Status | 0                       |                               | Alarm 6 Status | 3     |       | Alarm 5 Statu               | S     |                |  |   |

Table C.10 Instance 100 Data Format (Alarm and Relay Status Values Assembly)

| Byte | Bit 7             | Bit 6 | Bit 5 | Bit 4                           | Bit 3 | Bit 2 | Bit 1          | Bit 0 |  |
|------|-------------------|-------|-------|---------------------------------|-------|-------|----------------|-------|--|
| 3    | Relay 4<br>Status | 0     |       | Alarm 8 Status                  |       |       | Alarm 7 Status |       |  |
| 4    | Relay 5<br>Status | 0     |       | Alarm 10 Status                 |       |       | Alarm 9 Sta    | tus   |  |
| 5    | 0                 | 0     |       | Alarm 12 St                     | atus  |       | Alarm 11 Sta   | atus  |  |
| 6    | 0                 | 0     |       | Alarm 14 Status Alarm 13 Status |       |       | atus           |       |  |
| 7    | 0                 | 0     |       | Alarm 16 St                     | atus  |       | Alarm 15 Sta   | atus  |  |

Instance 101 - Measurement Values

This assembly instance can be selected to be sent in response to an I/O Poll Request from a Master. This instance is the default Poll response selection for firmware revision 3 or later, and it is the only available Poll response for firmware revisions 1 and 2.

**Table C.11 Instance 101 Data Format (Measurement Values Assembly)** 

| Byte    | Bit 7 | Bit 6                              | Bit 5            | Bit 4            | Bit 3          | Bit 2          | Bit 1   | Bit 0 |  |  |  |
|---------|-------|------------------------------------|------------------|------------------|----------------|----------------|---------|-------|--|--|--|
| 0 - 3   |       | •                                  | •                | Channel 1        | Overall value  | •              | •       | •     |  |  |  |
| 4 - 7   |       | Channel 2 Overall value            |                  |                  |                |                |         |       |  |  |  |
| 8 - 11  |       |                                    | Channel 1 Gap va | ılue (Analog Inp | out Point (AIF | ) Object Insta | nce #1) |       |  |  |  |
| 12 - 15 |       |                                    | Channe           | el 2 Gap value ( | AIP Object Ir  | istance #2)    |         |       |  |  |  |
| 16 - 19 |       |                                    |                  | Spee             | d value        |                |         |       |  |  |  |
| 20 - 23 |       |                                    |                  | Maximum          | Speed value    |                |         |       |  |  |  |
| 24 - 27 |       |                                    |                  | Channel 1        | Band 1 value   |                |         |       |  |  |  |
| 28 - 31 |       |                                    |                  | Channel 2 l      | Band 1 value   |                |         |       |  |  |  |
| 32 - 35 |       |                                    |                  | Channel 1        | Band 2 value   |                |         |       |  |  |  |
| 36 - 39 |       |                                    |                  | Channel 2 l      | Band 2 value   |                |         |       |  |  |  |
| 40 - 43 |       |                                    |                  | Channel 1        | Band 3 value   |                |         |       |  |  |  |
| 44 - 47 |       |                                    |                  | Channel 2 l      | Band 3 value   |                |         |       |  |  |  |
| 48 - 51 |       |                                    |                  | Channel 1        | Band 4 value   |                |         |       |  |  |  |
| 52 - 55 |       |                                    |                  | Channel 2 l      | Band 4 value   |                |         |       |  |  |  |
| 56 - 59 |       |                                    | Cha              | annel 1 Vector   | 1 Magnitude    | value          |         |       |  |  |  |
| 60 - 63 |       |                                    | (                | Channel 1 Vect   | or 1 Phase va  | alue           |         |       |  |  |  |
| 64 - 67 |       |                                    | Cha              | annel 2 Vector   | 1 Magnitude    | value          |         |       |  |  |  |
| 68 - 71 |       | Channel 2 Vector 1 Phase value     |                  |                  |                |                |         |       |  |  |  |
| 72 - 75 |       | Channel 1 Vector 2 Magnitude value |                  |                  |                |                |         |       |  |  |  |
| 76 - 79 |       | Channel 1 Vector 2 Phase value     |                  |                  |                |                |         |       |  |  |  |
| 80 - 83 |       | -                                  | Ch               | annel 2 Vector   | 2 Magnitude    | value          |         |       |  |  |  |

Table C.11 Instance 101 Data Format (Measurement Values Assembly)

| Byte      | Bit 7 | Bit 6                                            | Bit 5     | Bit 4           | Bit 3           | Bit 2           | Bit 1           | Bit 0 |  |  |  |
|-----------|-------|--------------------------------------------------|-----------|-----------------|-----------------|-----------------|-----------------|-------|--|--|--|
| 84 - 87   |       | Channel 2 Vector 2 Phase value                   |           |                 |                 |                 |                 |       |  |  |  |
| 88 - 91   |       |                                                  |           | Channel 1 Vect  | or 3 Magnitude  | e value         |                 |       |  |  |  |
| 92 - 95   |       |                                                  |           | Channel 2 Vect  | or 3 Magnitude  | e value         |                 |       |  |  |  |
| 96 - 99   |       |                                                  | Chanr     | nel 1 Not 1X va | lue (AIP Object | Instance #3)    |                 |       |  |  |  |
| 100 - 103 |       |                                                  | Chanr     | nel 2 Not 1X va | lue (AIP Object | Instance #4)    |                 |       |  |  |  |
| 104 - 107 |       |                                                  | Channel   | 1 1 gSE Overall | value (AIP Obje | ct Instance #5  | )               |       |  |  |  |
| 108 - 111 |       |                                                  | Channel   | l 2 gSE Overall | value (AIP Obje | ct Instance #6  | )               |       |  |  |  |
| 112 - 115 |       |                                                  | Channel 1 | Sum Harmonio    | s value (AIP Ob | ject Instance i | <del>#</del> 7) |       |  |  |  |
| 116 - 119 |       | Channel 2 Sum Harmonics (AIP Object Instance #8) |           |                 |                 |                 |                 |       |  |  |  |
| 120 - 123 |       |                                                  |           | Accelo          | eration value   |                 |                 |       |  |  |  |

### Instance 102 - Measurement Values

This assembly instance can be selected to be sent in response to an I/O Poll request from a Master. This instance includes all of the channel 1 parameters first.

**Table C.12 Instance 102 Data Format (Measurement Values Assembly)** 

| Byte    | Bit 7 | Bit 6                   | Bit 5        | Bit 4            | Bit 3           | Bit 2          | Bit 1 | Bit 0 |  |  |
|---------|-------|-------------------------|--------------|------------------|-----------------|----------------|-------|-------|--|--|
| 0 - 3   |       | •                       |              | Speed            | dvalue          |                |       |       |  |  |
| 4 - 7   |       | Channel 1 Overall value |              |                  |                 |                |       |       |  |  |
| 8 - 11  |       |                         | Channel 1    | gSE Overall val  | ue (AIP Object  | Instance #5)   |       |       |  |  |
| 12 - 15 |       |                         |              | Channel 1 I      | Band 1 value    |                |       |       |  |  |
| 16 - 19 |       |                         |              | Channel 1 I      | Band 2 value    |                |       |       |  |  |
| 20 - 23 |       |                         | Ch           | annel 1 Vector   | 1 Magnitude va  | alue           |       |       |  |  |
| 24 - 27 |       |                         | Ch           | annel 1 Vector   | 2 Magnitude va  | alue           |       |       |  |  |
| 28 - 31 |       |                         | Ch           | annel 1 Vector   | 3 Magnitude va  | alue           |       |       |  |  |
| 32 - 35 |       |                         |              | Channel 1 I      | Band 3 value    |                |       |       |  |  |
| 36 - 39 |       |                         |              | Channel 1 I      | Band 4 value    |                |       |       |  |  |
| 40 - 43 |       |                         |              | Channel 1 Vect   | or 1 Phase valu | е              |       |       |  |  |
| 44 - 47 |       |                         |              | Channel 1 Vect   | or 2 Phase valu | е              |       |       |  |  |
| 48 - 51 |       |                         | Channe       | el 1 Gap value ( | AIP Object Inst | ance #1)       |       |       |  |  |
| 52 - 55 |       |                         | Channel      | 1 Not 1X value   | (AIP Object Ins | stance #3)     |       |       |  |  |
| 56 - 59 |       |                         | Channel 1 Su | ım Harmonics v   | alue (AIP Objec | t Instance #7) |       |       |  |  |
| 60 - 63 |       | Acceleration value      |              |                  |                 |                |       |       |  |  |
| 64 - 67 |       |                         |              | Channel 2 (      | Overall value   |                |       |       |  |  |
| 68 - 71 |       |                         | Channel 2    | gSE Overall val  | ue (AIP Object  | Instance #6)   |       |       |  |  |

Table C.12 Instance 102 Data Format (Measurement Values Assembly)

| Byte      | Bit 7 | Bit 6                                                  | Bit 5 | Bit 4           | Bit 3                      | Bit 2 | Bit 1 | Bit 0 |  |  |
|-----------|-------|--------------------------------------------------------|-------|-----------------|----------------------------|-------|-------|-------|--|--|
| 72 - 75   |       | Channel 2 Band 1 value                                 |       |                 |                            |       |       |       |  |  |
| 76 - 79   |       |                                                        |       | Channel 2       | Band 2 value               |       |       |       |  |  |
| 80 - 83   |       |                                                        | Ch    | nannel 2 Vector | 1 Magnitude v              | alue  |       |       |  |  |
| 84 - 87   |       |                                                        | Ch    | nannel 2 Vector | <sup>2</sup> 2 Magnitude v | alue  |       |       |  |  |
| 88 - 91   |       |                                                        | Ch    | nannel 2 Vector | 3 Magnitude v              | alue  |       |       |  |  |
| 92 - 95   |       |                                                        |       | Channel 2       | Band 3 value               |       |       |       |  |  |
| 96 - 99   |       |                                                        |       | Channel 2       | Band 4 value               |       |       |       |  |  |
| 100 - 103 |       |                                                        |       | Channel 2 Vec   | tor 1 Phase valu           | ne    |       |       |  |  |
| 104 - 107 |       |                                                        |       | Channel 2 Vec   | tor 2 Phase valu           | ne    |       |       |  |  |
| 108 - 111 |       | Channel 2 Gap value (AIP Object Instance #2)           |       |                 |                            |       |       |       |  |  |
| 112 - 115 |       | Channel 2 Not 1X value (AIP Object Instance #4)        |       |                 |                            |       |       |       |  |  |
| 116 - 119 |       | Channel 2 Sum Harmonics value (AIP Object Instance #8) |       |                 |                            |       |       |       |  |  |
| 120 - 123 |       |                                                        |       | Maximum         | Speed value                |       |       |       |  |  |

### Instance 103 - Measurement Values

This assembly instance can be selected to be sent in response to an I/O Poll request from a Master. This instance includes all of the non-speed related measurements first.

Table C.13 Instance 103 Data Format (Measurement Values Assembly)

| Byte    | Bit 7 | Bit 6                                                | Bit 5     | Bit 4             | Bit 3           | Bit 2         | Bit 1           | Bit 0 |  |  |
|---------|-------|------------------------------------------------------|-----------|-------------------|-----------------|---------------|-----------------|-------|--|--|
| 0 - 3   |       | Channel 1 Band 1 value                               |           |                   |                 |               |                 |       |  |  |
| 4 - 7   |       |                                                      |           | Channel 2         | Band 1 value    |               |                 |       |  |  |
| 8 - 11  |       | Channel 1 Band 2 value                               |           |                   |                 |               |                 |       |  |  |
| 12 - 15 |       |                                                      |           | Channel 2         | Band 2 value    |               |                 |       |  |  |
| 16 - 19 |       |                                                      |           | Channel 1         | Overall value   |               |                 |       |  |  |
| 20 - 23 |       |                                                      |           | Channel 2         | Overall value   |               |                 |       |  |  |
| 24 - 27 |       |                                                      |           | Channel 1         | Band 3 value    |               |                 |       |  |  |
| 28 - 31 |       |                                                      |           | Channel 2         | Band 3 value    |               |                 |       |  |  |
| 32 - 35 |       |                                                      |           | Channel 1         | Band 4 value    |               |                 |       |  |  |
| 36 - 39 |       |                                                      |           | Channel 2         | Band 4 value    |               |                 |       |  |  |
| 40 - 43 |       |                                                      | Chan      | nel 1 Gap value ( | AIP Object Inst | ance #1)      |                 |       |  |  |
| 44 - 47 |       | Channel 2 Gap value (AIP Object Instance #2)         |           |                   |                 |               |                 |       |  |  |
| 48 - 51 |       | Channel 1 gSE Overall value (AIP Object Instance #5) |           |                   |                 |               |                 |       |  |  |
| 52 - 55 |       | Channel 2 gSE Overall value (AIP Object Instance #6) |           |                   |                 |               |                 |       |  |  |
| 56 - 59 |       |                                                      | Channel 1 | Sum Harmonics v   | /alue (AIP Obje | ct Instance # | <del>/</del> 7) |       |  |  |

**Table C.13 Instance 103 Data Format (Measurement Values Assembly)** 

| Byte      | Bit 7                              | t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0          |         |                |                 |            |  |  |  |
|-----------|------------------------------------|--------------------------------------------------------|---------|----------------|-----------------|------------|--|--|--|
| 60 - 63   |                                    | Channel 2 Sum Harmonics value (AIP Object Instance #8) |         |                |                 |            |  |  |  |
| 64 - 67   |                                    |                                                        | Channel | 1 Not 1X value | (AIP Object Ins | stance #3) |  |  |  |
| 68 - 71   |                                    |                                                        | Channel | 2 Not 1X value | (AIP Object Ins | stance #4) |  |  |  |
| 72 - 75   |                                    |                                                        | (       | Channel 1 Vect | or 1 Phase valu | е          |  |  |  |
| 76 - 79   |                                    |                                                        | (       | Channel 2 Vect | or 1 Phase valu | е          |  |  |  |
| 80 - 83   |                                    |                                                        | (       | Channel 1 Vect | or 2 Phase valu | е          |  |  |  |
| 84 - 87   |                                    |                                                        | (       | Channel 2 Vect | or 2 Phase valu | е          |  |  |  |
| 88 - 91   |                                    |                                                        | Cha     | annel 1 Vector | 1 Magnitude va  | alue       |  |  |  |
| 92 - 95   |                                    |                                                        | Cha     | annel 2 Vector | 1 Magnitude va  | alue       |  |  |  |
| 96 - 99   |                                    |                                                        | Cha     | annel 1 Vector | 2 Magnitude va  | alue       |  |  |  |
| 100 - 103 |                                    |                                                        | Cha     | annel 2 Vector | 2 Magnitude va  | alue       |  |  |  |
| 104 - 107 |                                    | Channel 1 Vector 3 Magnitude value                     |         |                |                 |            |  |  |  |
| 108 - 111 | Channel 2 Vector 3 Magnitude value |                                                        |         |                |                 |            |  |  |  |
| 112 - 115 | Speed value                        |                                                        |         |                |                 |            |  |  |  |
| 116 - 119 |                                    | Maximum Speed value                                    |         |                |                 |            |  |  |  |
| 120 - 123 |                                    |                                                        |         | Accelera       | tion value      |            |  |  |  |

### Instance 104 - Measurement Values

This assembly instance can be selected to be sent in response to an I/O Poll request from a Master. This instance prioritizes gap and various speed measurements.

**Table C.14 Instance 104 Data Format (Measurement Values Assembly)** 

| Byte    | Bit 7 | Bit 6                              | Bit 5 | Bit 4           | Bit 3             | Bit 2       | Bit 1 | Bit 0 |  |  |
|---------|-------|------------------------------------|-------|-----------------|-------------------|-------------|-------|-------|--|--|
| 0 - 3   |       | Acceleration value                 |       |                 |                   |             |       |       |  |  |
| 4 - 7   |       |                                    |       | Sp              | oeed value        |             |       |       |  |  |
| 8 - 11  |       |                                    |       | Channe          | l 1 Overall value | )           |       |       |  |  |
| 12 - 15 |       |                                    |       | Channe          | l 2 Overall value | )           |       |       |  |  |
| 16 - 19 |       |                                    |       | Channel 1 Vec   | tor 1 Magnitude   | e value     |       |       |  |  |
| 20 - 23 |       |                                    |       | Channel 2 Vec   | tor 1 Magnitude   | e value     |       |       |  |  |
| 24 - 27 |       |                                    | Cha   | nnel 1 Gap vali | ue (AIP Object II | nstance #1) |       |       |  |  |
| 28 - 31 |       |                                    | Cha   | nnel 2 Gap valı | ue (AIP Object II | nstance #2) |       |       |  |  |
| 32 - 35 |       |                                    |       | Channel 1 Vec   | tor 2 Magnitude   | e value     |       |       |  |  |
| 36 - 39 |       | Channel 2 Vector 2 Magnitude value |       |                 |                   |             |       |       |  |  |
| 40 - 43 |       |                                    |       | Channel 1 V     | ector 1 Phase v   | alue        |       |       |  |  |
| 44 - 47 |       |                                    |       | Channel 2 V     | ector 1 Phase v   | alue        |       |       |  |  |

**Table C.14 Instance 104 Data Format (Measurement Values Assembly)** 

| Byte      | Bit 7 | Bit 6                                                  | Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |                 |               |                |  |   |  |  |  |
|-----------|-------|--------------------------------------------------------|-------------------------------------------|-----------------|---------------|----------------|--|---|--|--|--|
| 48 - 51   |       |                                                        |                                           | Channel 1       | Band 1 value  |                |  | • |  |  |  |
| 52 - 55   |       |                                                        |                                           | Channel 2 l     | Band 1 value  |                |  |   |  |  |  |
| 56 - 59   |       | Channel 1 Band 2 value                                 |                                           |                 |               |                |  |   |  |  |  |
| 60 - 63   |       | Channel 2 Band 2 value                                 |                                           |                 |               |                |  |   |  |  |  |
| 64 - 67   |       | Channel 1 Not 1X value (AIP Object Instance #3)        |                                           |                 |               |                |  |   |  |  |  |
| 68 - 71   |       | Channel 2 Not 1X value (AIP Object Instance #4)        |                                           |                 |               |                |  |   |  |  |  |
| 72 - 75   |       | Channel 1 Band 3 value                                 |                                           |                 |               |                |  |   |  |  |  |
| 76 - 79   |       |                                                        |                                           | Channel 2       | Band 3 value  |                |  |   |  |  |  |
| 80 - 83   |       |                                                        |                                           | Channel 1       | Band 4 value  |                |  |   |  |  |  |
| 84 - 87   |       |                                                        |                                           | Channel 2       | Band 4 value  |                |  |   |  |  |  |
| 88 - 91   |       |                                                        | Channel 1                                 | gSE Overall val | ue (AIP Objec | t Instance #5) |  |   |  |  |  |
| 92 - 95   |       |                                                        | Channel 2                                 | gSE Overall val | ue (AIP Objec | t Instance #6) |  |   |  |  |  |
| 96 - 99   |       |                                                        | Ch                                        | annel 1 Vector  | 3 Magnitude   | value          |  |   |  |  |  |
| 100 - 103 |       |                                                        | Ch                                        | annel 2 Vector  | 3 Magnitude   | value          |  |   |  |  |  |
| 104 - 107 |       |                                                        |                                           | Channel 1 Vect  | or 2 Phase va | lue            |  |   |  |  |  |
| 108 - 111 |       | Channel 2 Vector 2 Phase value                         |                                           |                 |               |                |  |   |  |  |  |
| 112 - 115 |       | Channel 1 Sum Harmonics value (AIP Object Instance #7) |                                           |                 |               |                |  |   |  |  |  |
| 116 - 119 |       | Channel 2 Sum Harmonics value (AIP Object Instance #8) |                                           |                 |               |                |  |   |  |  |  |
| 120 - 123 |       |                                                        |                                           | Maximum         | Speed value   |                |  |   |  |  |  |

## Instance 105 - Measurement Values

This Assembly instance can be selected to be sent in response to an I/O Poll request from a Master.

Table C.15 Instance 105 Data Format (Measurement Values Assembly)

| Byte    | Bit 7 | Bit 6                                                | Bit 5     | Bit 4          | Bit 3           | Bit 2        | Bit 1 | Bit 0 |  |  |
|---------|-------|------------------------------------------------------|-----------|----------------|-----------------|--------------|-------|-------|--|--|
| 0 - 3   |       | Channel 1 gSE Overall value (AIP Object Instance #5) |           |                |                 |              |       |       |  |  |
| 4 - 7   |       |                                                      | Channel 2 | gSE Overall va | lue (AIP Object | Instance #6) |       |       |  |  |
| 8 - 11  |       |                                                      |           | Channel 1      | Overall value   |              |       |       |  |  |
| 12 - 15 |       | Channel 2 Overall value                              |           |                |                 |              |       |       |  |  |
| 16 - 19 |       |                                                      |           | Spee           | d value         |              |       |       |  |  |
| 20 - 23 |       |                                                      |           | Accelera       | ation value     |              |       |       |  |  |
| 24 - 27 |       |                                                      | Ch        | annel 1 Vector | 1 Magnitude v   | alue         |       |       |  |  |
| 28 - 31 |       | Channel 2 Vector 1 Magnitude value                   |           |                |                 |              |       |       |  |  |
| 32 - 35 |       | Channel 1 Vector 2 Magnitude value                   |           |                |                 |              |       |       |  |  |
| 36 - 39 |       | Channel 2 Vector 2 Magnitude value                   |           |                |                 |              |       |       |  |  |

Table C.15 Instance 105 Data Format (Measurement Values Assembly)

| Byte      | Bit 7 | Bit 6                                        | Bit 5        | Bit 4            | Bit 3          | Bit 2          | Bit 1           | Bit 0 |  |  |
|-----------|-------|----------------------------------------------|--------------|------------------|----------------|----------------|-----------------|-------|--|--|
| 40 - 43   |       |                                              |              | Channel 1        | Band 1 value   |                |                 |       |  |  |
| 44 - 47   |       |                                              |              | Channel 2 l      | Band 1 value   |                |                 |       |  |  |
| 48 - 51   |       | Channel 1 band 2 value                       |              |                  |                |                |                 |       |  |  |
| 52 - 55   |       |                                              |              | Channel 2 l      | Band 2 value   |                |                 |       |  |  |
| 56 - 59   |       |                                              |              | Channel 1        | Band 3 value   |                |                 |       |  |  |
| 60 - 63   |       |                                              |              | Channel 2 l      | Band 3 value   |                |                 |       |  |  |
| 64 - 67   |       |                                              |              | Channel 1        | Band 4 value   |                |                 |       |  |  |
| 68 - 71   |       |                                              |              | Channe           | l 2 Band       |                |                 |       |  |  |
| 72 - 75   |       |                                              | Ch           | nannel 1 Vector  | 3 Magnitude    | value          |                 |       |  |  |
| 76 - 79   |       |                                              | Ch           | nannel 2 Vector  | 3 Magnitude    | value          |                 |       |  |  |
| 80 - 83   |       |                                              |              | Channel 1 Vect   | or 1 Phase va  | lue            |                 |       |  |  |
| 84 - 87   |       |                                              |              | Channel 2 Vect   | or 1 Phase va  | lue            |                 |       |  |  |
| 88 - 91   |       |                                              | Channel      | 1 Not 1X value   | (AIP Object I  | nstance #3)    |                 |       |  |  |
| 92 - 95   |       |                                              | Channel      | 2 Not 1X value   | (AIP Object I  | nstance #4)    |                 |       |  |  |
| 96 - 99   |       |                                              | Channel 1 St | um Harmonics v   | alue (AIP Obj  | ect Instance # | <del>#</del> 7) |       |  |  |
| 100 - 103 |       |                                              | Channel 2 St | um Harmonics v   | alue (AIP Obj  | ect Instance # | <del>/</del> 8) |       |  |  |
| 104 - 107 |       | Channel 1 Vector 2 Phase value               |              |                  |                |                |                 |       |  |  |
| 108 - 111 |       | Channel 2 Vector 2 Phase value               |              |                  |                |                |                 |       |  |  |
| 112 - 115 |       | Maximum Speed value                          |              |                  |                |                |                 |       |  |  |
| 116 - 119 |       | Channel 1 Gap value (AIP Object Instance #1) |              |                  |                |                |                 |       |  |  |
| 120 - 123 |       |                                              | Channe       | el 2 Gap value ( | AIP Object Ins | stance #2)     |                 |       |  |  |

### Instance 106 - Measurement Values

This Assembly instance can be selected to be sent in response to an I/O Poll request from a Master. This instance includes some Vector Magnitude measurements first.

Table C.16 Instance 103 Data Format (Measurement Values Assembly)

| Byte    | Bit 7 | Bit 6                              | Bit 5 | Bit 4          | Bit 3       | Bit 2   | Bit 1 | Bit 0 |  |  |
|---------|-------|------------------------------------|-------|----------------|-------------|---------|-------|-------|--|--|
| 0 - 3   |       | Channel 1 Vector 1 Magnitude value |       |                |             |         |       |       |  |  |
| 4 - 7   |       |                                    | Ch    | annel 2 Vector | 1 Magnitude | e value |       |       |  |  |
| 8 - 11  |       | Channel 1 Vector 2 Magnitude value |       |                |             |         |       |       |  |  |
| 12 - 15 |       |                                    | Ch    | annel 2 Vector | 2 Magnitude | e value |       |       |  |  |
| 16 - 19 |       |                                    |       | Spee           | d value     |         |       |       |  |  |
| 20 - 23 |       | Channel 1 Overall value            |       |                |             |         |       |       |  |  |
| 24 - 27 |       | Channel 2 Overall value            |       |                |             |         |       |       |  |  |

Table C.16 Instance 103 Data Format (Measurement Values Assembly)

| Byte      | Bit 7 | Bit 6                                                | Bit 5     | Bit 4            | Bit 3            | Bit 2           | Bit 1           | Bit 0 |  |  |
|-----------|-------|------------------------------------------------------|-----------|------------------|------------------|-----------------|-----------------|-------|--|--|
| 28 - 31   |       |                                                      | •         | Channel          | 1 Band 1 value   | ;               |                 |       |  |  |
| 32 - 35   |       | Channel 2 Band 1 value                               |           |                  |                  |                 |                 |       |  |  |
| 36 - 39   |       | Channel 1 Band 2 value                               |           |                  |                  |                 |                 |       |  |  |
| 40 - 43   |       |                                                      |           | Channel          | 2 Band 2 value   | ;               |                 |       |  |  |
| 44 - 47   |       |                                                      |           | Channel          | 1 Band 3 value   | )               |                 |       |  |  |
| 48 - 51   |       |                                                      |           | Channel          | 2 Band 3 value   | )               |                 |       |  |  |
| 52 - 55   |       |                                                      |           | Channel          | 1 Band 4 value   | )               |                 |       |  |  |
| 56 - 59   |       |                                                      |           | Channel          | 2 Band 4 value   | )               |                 |       |  |  |
| 60 - 63   |       |                                                      | Channel 1 | Sum Harmonic     | s value (AIP Ob  | ject Instance 7 | <del>#</del> 7) |       |  |  |
| 64 - 67   |       |                                                      | Channel 2 | Sum Harmonic     | s value (AIP Ob  | ject Instance 7 | #8)             |       |  |  |
| 68 - 71   |       |                                                      | Chanr     | nel 1 Not 1X val | ue (AIP Object   | Instance #3)    |                 |       |  |  |
| 72 - 75   |       |                                                      | Chanr     | nel 2 Not 1X val | ue (AIP Object   | Instance #4)    |                 |       |  |  |
| 76 - 79   |       |                                                      |           | Channel 1 Ve     | ctor 1 Phase v   | alue            |                 |       |  |  |
| 80 - 83   |       |                                                      |           | Channel 2 Ve     | ctor 1 Phase v   | alue            |                 |       |  |  |
| 84 - 87   |       |                                                      |           | Channel 1 Ve     | ctor 2 Phase v   | alue            |                 |       |  |  |
| 88 - 91   |       |                                                      |           | Channel 2 Ve     | ctor 2 Phase v   | alue            |                 |       |  |  |
| 92 - 95   |       |                                                      |           | Channel 1 Vector | or 3 Magnitude   | e value         |                 |       |  |  |
| 96 - 99   |       |                                                      |           | Channel 2 Vector | or 3 Magnitude   | e value         |                 |       |  |  |
| 100 - 103 |       |                                                      | Chai      | nnel 1 Gap valu  | e (AIP Object Ir | nstance #1)     |                 |       |  |  |
| 104 - 107 |       | Channel 2 Gap value (AIP Object Instance #2)         |           |                  |                  |                 |                 |       |  |  |
| 108 - 111 |       | Maximum Speed value                                  |           |                  |                  |                 |                 |       |  |  |
| 112 - 115 |       | Channel 1 gSE Overall value (AIP Object Instance #5) |           |                  |                  |                 |                 |       |  |  |
| 116 - 119 |       | Channel 2 gSE Overall value (AIP Object Instance #6) |           |                  |                  |                 |                 |       |  |  |
| 120 - 123 |       |                                                      |           | Accele           | ration value     |                 |                 |       |  |  |

### Instance 199 - Dynamic Assembly

This Assembly instance can be created and configured with the XM Serial Configuration Utility or RSMACC Enterprise Online Configuration Utility. Using the configuration software, you determine the format of the data. This assembly instance can be selected to be sent in response to an I/O Poll request from a Master.

The dynamic Assembly can include all of the measurement values included in Assembly instance 101. In addition, the dynamic Assembly can include the following configuration parameters.

**Table C.17 Instance 199 Component Mapping** 

| EPATH (where ii = instance number) | Class<br>Name | Class<br>Number  | Instance<br>Number | Attribute<br>Name                       | Attribute<br>Number | Data<br>Type |
|------------------------------------|---------------|------------------|--------------------|-----------------------------------------|---------------------|--------------|
| 21 1D 03 24 ii 30 04               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Alarm Enable                            | 4                   | BOOL         |
| 21 1D 03 24 ii 30 05               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Туре                                    | 5                   | USINT        |
| 21 1D 03 24 ii 30 07               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Condition                               | 7                   | USINT        |
| 21 1D 03 24 ii 30 08               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Alert Threshold (High)                  | 8                   | REAL         |
| 21 1D 03 24 ii 30 09               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Danger Threshold<br>(High)              | 9                   | REAL         |
| 21 1D 03 24 ii 30 0A               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Alert Threshold Low                     | 10                  | REAL         |
| 21 1D 03 24 ii 30 0B               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Danger Threshold Low                    | 11                  | REAL         |
| 21 1D 03 24 ii 30 0C               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Hysteresis                              | 12                  | REAL         |
| 21 1D 03 24 ii 30 0D               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Threshold (Set Point)<br>Multiplier     | 13                  | REAL         |
| 21 1D 03 24 ii 30 0E               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Startup Period                          | 14                  | UINT         |
| 21 1D 03 24 ii 30 0F               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Speed Range Enable                      | 15                  | BOOL         |
| 21 1D 03 24 ii 30 10               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Speed Range High                        | 16                  | REAL         |
| 21 1D 03 24 ii 30 11               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Speed Range Low                         | 17                  | REAL         |
| 21 OF 00 24 ii 30 01               | Param         | 0F <sub>h</sub>  | 10 - 25            | Measurement<br>Identifier               | 1                   | USINT        |
| 21 1D 03 24 ii 30 14               | Alarm         | 31D <sub>h</sub> | 1 - 16             | Inhibit Tach Fault                      | 20                  | BOOL         |
| 21 23 03 24 ii 30 04               | Relay         | 323 <sub>h</sub> | 1 - 5              | Relay Enable                            | 4                   | BOOL         |
| 21 23 03 24 ii 30 05               | Relay         | 323 <sub>h</sub> | 1 - 5              | Latch Enable                            | 5                   | BOOL         |
| 21 23 03 24 ii 30 06               | Relay         | 323 <sub>h</sub> | 1 - 5              | Failsafe Enable                         | 6                   | BOOL         |
| 21 23 03 24 ii 30 07               | Relay         | 323 <sub>h</sub> | 1 - 5              | Delay                                   | 7                   | UINT         |
| 21 23 03 24 ii 30 09               | Relay         | 323 <sub>h</sub> | 1 - 5              | Alarm Level                             | 9                   | BYTE         |
| 21 OF 00 24 ii 30 01               | Param         | 0F <sub>h</sub>  | 26 - 30            | Parameter Value<br>(Alarm Identifier A) | 1                   | USINT        |
| 21 OF 00 24 ii 30 01               | Param         | 0F <sub>h</sub>  | 31 - 35            | Parameter Value<br>(Alarm Identifier B) | 1                   | USINT        |
| 21 23 03 24 ii 30 0C               | Relay         | 323 <sub>h</sub> | 1 - 5              | Logic                                   | 12                  | USINT        |
| 21 23 03 24 ii 30 0E               | Relay         | 323 <sub>h</sub> | 1 - 5              | Relay Installed                         | 14                  | BOOL         |

The dynamic Assembly instance must be instantiated with a call to the class level Create service. Then the structure can be defined with the Set\_Attribute\_Single service for the Member List attribute. Only one dynamic Attribute instance is supported so subsequent calls to the Create service will return a Resource Unavailable (0x02) error. The Delete service can be used to destroy the dynamic Assembly instance so that it can be re-created.

### **Services**

**Table C.18 Assembly Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 |
|-----------------|----------------------|----------------------|
| 0E <sub>h</sub> | Class/Instance       | Get_Attribute_Single |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single |
| 08 <sub>h</sub> | Class                | Create               |
| 09 <sub>h</sub> | Instance             | Delete               |

# Connection Object (Class ID 05<sub>H</sub>)

The Connection Object allocates and manages the internal resources associated with both I/O and Explicit Messaging Connections.

### **Class Attributes**

The Connection Object provides no class attributes.

#### Instances

**Table C.19 Connection Object Instances** 

| Instance | Description                                                |
|----------|------------------------------------------------------------|
| 1        | Explicit Message Connection for pre-defined connection set |
| 2        | I/O Poll Connection                                        |
| 3        | I/O Strobe Connection                                      |
| 4        | I/O COS (change of state) Connection                       |
| 11 - 17  | Explicit Message Connection                                |

# **Instance Attributes**

**Table C.20 Connection Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                               | Data Type         | Description                                                                                                                                           |
|---------|----------------|------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Get            | State                              | USINT             | State of the object.                                                                                                                                  |
| 2       | Get            | Instance Type                      | USINT             | Indicates either I/O or Messaging Connection.                                                                                                         |
| 3       | Get            | Transport Class Trigger            | BYTE              | Defines behavior of the Connection.                                                                                                                   |
| 4       | Get            | Produced Connection ID             | UINT              | Placed in CAN Identifier Field when the Connection transmits.                                                                                         |
| 5       | Get            | Consumed Connection ID             | UINT              | CAN Identifier Field value that denotes message to be received.                                                                                       |
| 6       | Get            | Initial Comm<br>Characteristics    | ВҮТЕ              | Defines the Message Group(s) across which productions and consumptions associated with this Connection occur.                                         |
| 7       | Get            | Produced Connection<br>Size        | UINT              | Maximum number of bytes transmitted across this Connection.                                                                                           |
| 8       | Get            | Consumed Connection<br>Size        | UINT              | Maximum number of bytes received across this Connection.                                                                                              |
| 9       | Get/Set        | Expected Packet Rate               | UINT              | Defines timing associated with this Connection.                                                                                                       |
| 12      | Get/Set        | Watchdog Time-out<br>Action        | USINT             | Defines how to handle Inactivity/Watchdog timeouts.                                                                                                   |
| 13      | Get            | Produced Connection<br>Path Length | UINT              | Number of bytes in the production_connection_path attribute.                                                                                          |
| 14      | Get            | Produced Connection<br>Path        | Array of<br>USINT | Specifies the Application Object(s) whose data is to be produced by this Connection Object. See DeviceNet Specification Volume 1 Appendix I.          |
| 15      | Get            | Consumed Connection<br>Path Length | UINT              | Number of bytes in the consumed_connection_path attribute.                                                                                            |
| 16      | Get            | Consumed Connection<br>Path        | Array of<br>USINT | Specifies the Application Object(s) that are to receive the data consumed by this Connection Object. See DeviceNet Specification Volume 1 Appendix I. |
| 17      | Get            | Production Inhibit Time            | UINT              | Defines minimum time between new data production.                                                                                                     |

**Table C.21 Connection Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 |
|-----------------|----------------------|----------------------|
| 05 <sub>h</sub> | Instance             | Reset                |
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single |

# Discrete Input Point Object (Class ID 08<sub>H</sub>)

The Discrete Input Point Object stores information about the value of the Setpoint Multiplier signal.

## **Class Attributes**

**Table C.22 Discrete Input Object Class Attributes** 

| Attr ID | Access<br>Rule | Name     | Data Type | Description                         | Semantics |
|---------|----------------|----------|-----------|-------------------------------------|-----------|
| 1       | Get            | Revision | UINT      | Revision of the implemented object. | 2         |

**Table C.23 Discrete Input Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                | Data Type | Description                                                               | Semantics                                                                                       |
|---------|----------------|---------------------|-----------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 3       | Get            | Value               | BOOL      | Setpoint Multiplier                                                       | 0 = Off<br>1 = On                                                                               |
| 199     | Set            | Backdoor<br>Service | USINT     | Setting this attribute is equivalent to requesting the specified service. | Set to one of the following values to perform the specified service:  0x32 = Open  0x33 = Close |

**Table C.24 Discrete Input Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                                      |
|-----------------|----------------------|----------------------|--------------------------------------------------|
| 0E <sub>h</sub> | Class/Instance       | Get_Attribute_Single | Returns the contents of the specified attribute. |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets the contents of the specified attribute.    |
| 32 <sub>h</sub> | Instance             | Open                 | Opens the virtual Setpoint Multiplier switch.    |
| 33 <sub>h</sub> | Instance             | Close                | Closes the virtual Setpoint Multiplier switch.   |

# Analog Input Point (Class ID 0A<sub>H</sub>)

The Analog Input Point Object models simple analog measurements performed by the XM-122 module.

## **Class Attributes**

**Table C.25 Analog Input Point Object Class Attributes** 

| Attr ID | Access<br>Rule | Name     | Data Type | Description                         | Semantics |
|---------|----------------|----------|-----------|-------------------------------------|-----------|
| 1       | Get            | Revision | UINT      | Revision of the implemented object. | 2         |

## Instances

**Table C.26 Analog Input Point Object Instances** 

| Instance | Name                      | Description                           |
|----------|---------------------------|---------------------------------------|
| 1        | Gap Measurement 1         | Gap measurement for Channel 1         |
| 2        | Gap Measurement 2         | Gap measurement for Channel 2         |
| 3        | Not 1X Measurement 1      | Not 1X measurement for Channel 1      |
| 4        | Not 1X Measurement 2      | Not 1X measurement for Channel 2      |
| 5        | gSE Overall Measurement 1 | gSE Overall measurement for Channel 1 |

**Table C.26 Analog Input Point Object Instances** 

| Instance | Name                           | Description                             |
|----------|--------------------------------|-----------------------------------------|
| 6        | gSE Overall Measurement 2      | gSE Overall measurement for Channel 2   |
| 7        | Sum Harmonics<br>Measurement 1 | Sum Harmonics measurement for Channel 1 |
| 8        | Sum Harmonics<br>Measurement 2 | Sum Harmonics measurement for Channel 2 |

# **Instance Attributes**

**Table C.27 Analog Input Point Object Class Attributes** 

| Attr ID | Access<br>Rule | Name            | Data Type | Description                                      | Semantics                                                                                                                                        |
|---------|----------------|-----------------|-----------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Value           | REAL      |                                                  |                                                                                                                                                  |
| 4       | Get            | Status          | BOOL      | Indicates if a fault or alarm has occurred.      | 0 = Operating without alarms or faults 1 = Alarm or fault condition exists. The <b>Value</b> attribute may not represent the actual field value. |
| 8       | Get            | Value Data Type | USINT     | Determines the data type of the <b>Value</b> .   | 1 = REAL                                                                                                                                         |
| 147     | Get            | Data Units      | ENGUNIT   | The units context of the <b>Value</b> attribute. | See DeviceNet Specification<br>Volume 1 Appendix K.                                                                                              |

# **Services**

**Table C.28 Analog Input Point Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                                                |
|-----------------|----------------------|----------------------|------------------------------------------------------------|
| 0E <sub>h</sub> | Class/Instance       | Get_Attribute_Single | Returns the contents of the specified attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets the contents of the specified attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Parameter Object (Class ID OF<sub>H</sub>)

The Parameter Object provides the interface to the XM-122 configuration data. There are 47 Parameter Object instances implemented in the XM-122 module.

Instances 1-4 and 7-37 are implemented to provide an alternate method of setting the configuration parameters with EPATH or ENGUNIT data types. And Parameter Object instances 46 and 47 provide an alternate method of setting the Produced Connection Size and Produced Connection Path attributes for the Poll Connection because these attributes can be difficult to get/set directly through the Connection Object.

Parameter Object instances 5 and 6 are for setting the starting order for the Sum Harmonics measurements. And Parameter Object instances 38-45 determine whether to use a standard spectrum or gSE spectrum when calculating band values.

#### **Class Attributes**

**Table C.29 Parameter Object Class Attributes** 

| Attr ID | Access<br>Rule | Name                            | Data Type | Description                                         | Semantics                                                                                                                                |
|---------|----------------|---------------------------------|-----------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2       | Get            | Max Instance                    | UINT      | Maximum instance number of an object in this class. | Total number of parameter object instances.                                                                                              |
| 8       | Get            | Parameter Class<br>Descriptor   | WORD      | Bits that describe the parameter.                   | Bit 0 Supports Parameter<br>Instances<br>Bit 1 Supports Full Attrib.<br>Bit 2 Must do non-volatile store<br>Bit 3 Params in non-volatile |
| 9       | Get            | Config.<br>Assembly<br>Instance | UINT      |                                                     | Set to 0                                                                                                                                 |

# **Instances**

There are 47 instances of this object.

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                                                | Data Type | Valid Values                                                                         | Default Value |
|----------|--------------|-----------------------------------------------------|-----------|--------------------------------------------------------------------------------------|---------------|
| 1        | No           | Transducer 1 Sensitivity Units                      | USINT     | 0 = mils<br>1 = ips<br>2 = g<br>3 = psi<br>4 = volts<br>5 = mm/s<br>6 = µm<br>7 = Pa | 0             |
| 2        | No           | Transducer 2 Sensitivity Units                      | USINT     | 0 = mils<br>1 = ips<br>2 = g<br>3 = psi<br>4 = volts<br>5 = mm/s<br>6 = µm<br>7 = Pa | 0             |
| 3        | No           | Channel 1 Measurement Units                         | USINT     | 0 = mils<br>1 = ips<br>2 = g<br>3 = psi<br>4 = volts<br>5 = mm/s<br>6 = µm<br>7 = Pa | 0             |
| 4        | No           | Channel 2 Measurement Units                         | USINT     | 0 = mils<br>1 = ips<br>2 = g<br>3 = psi<br>4 = volts<br>5 = mm/s<br>6 = µm<br>7 = Pa | 0             |
| 5        | No           | Starting Order for Channel 1<br>Sum Harmonics meas. | USINT     | 1-5                                                                                  | 2             |
| 6        | No           | Starting Order for Channel 2<br>Sum Harmonics meas. | USINT     | 1-5                                                                                  | 2             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                                           | Data Type | Valid Values                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default Value |
|----------|--------------|------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 7        | No           | 4-20mA Output 1 Measurement Identifier         | USINT     | 0 = CH 1 Overall 1 = CH 2 Overall 2 = CH 1 Gap 3 = CH 2 Gap 4 = CH 1 Band 1 5 = CH 2 Band 1 6 = CH 1 Band 2 7 = CH 2 Band 3 9 = CH 2 Band 3 10 = CH 1 Band 4 11 = CH 2 Band 4 12 = Speed 14 = CH 1 1X Mag. 15 = CH 2 1X Mag. 15 = CH 2 1X Mag. 16 = CH 1 2X Mag. 17 = CH 2 2X Mag. 18 = CH 1 3X Mag. 19 = CH 2 3X Mag. 20 = CH 1 Not 1X 21 = CH 2 Not 1X 22 = CH 1 Sum Harmonics 29 = Acceleration 30 = CH1 gSE Overall 31 = CH2 gSE Overall | 0             |
| 8        | No           | 4-20mA Output 2<br>Measurement Identifier      | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             |
| 9        | No           | Transducer 3 (Tachometer)<br>Sensitivity Units | USINT     | 0 = mils<br>1 = ips<br>2 = g<br>3 = psi<br>4 = volts<br>5 = mm/s<br>6 = µm<br>7 = Pa                                                                                                                                                                                                                                                                                                                                                         | 0             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                            | Data Type | Valid Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default Value |
|----------|--------------|---------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 10       | No           | Alarm 1 Measurement Identifier  | USINT     | 0 = CH 1 Overall 1 = CH 2 Overall 2 = CH 1 Gap 3 = CH 2 Gap 4 = CH 1 Band 1 5 = CH 2 Band 1 6 = CH 1 Band 2 7 = CH 2 Band 3 9 = CH 2 Band 3 10 = CH 1 Band 4 11 = CH 2 Band 4 12 = Speed 14 = CH 1 1X Mag. 15 = CH 2 1X Mag. 15 = CH 2 1X Mag. 16 = CH 1 2X Mag. 17 = CH 2 2X Mag. 18 = CH 1 3X Mag. 19 = CH 2 3X Mag. 20 = CH 1 Not 1X 21 = CH 2 Not 1X 22 = CH 1 Sum Harmonics 23 = CH 2 Sum Harmonics 24 = CH 1 1X Phase 25 = CH 2 1X Phase 26 = CH 1 2X Phase 27 = CH 2 2X Phase 29 = Acceleration 30 = CH1 gSE Overall 31 = CH2 gSE Overall | 0             |
| 11       | No           | Alarm 2 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |
| 12       | No           | Alarm 3 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0             |
| 13       | No           | Alarm 4 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |
| 14       | No           | Alarm 5 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0             |
| 15       | No           | Alarm 6 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |
| 16       | No           | Alarm 7 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0             |
| 17       | No           | Alarm 8 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |
| 18       | No           | Alarm 9 Measurement Identifier  | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0             |
| 19       | No           | Alarm 10 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                            | Data Type | Valid Values                                                                                                                                                                                   | Default Value |
|----------|--------------|---------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 20       | No           | Alarm 11 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                | 0             |
| 21       | No           | Alarm 12 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                | 1             |
| 22       | No           | Alarm 13 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                | 0             |
| 23       | No           | Alarm 14 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                | 1             |
| 24       | No           | Alarm 15 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                | 0             |
| 25       | No           | Alarm 16 Measurement Identifier | USINT     | (same as above)                                                                                                                                                                                | 1             |
| 26       | No           | Relay 1 Alarm Identifier A      | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 27       | No           | Relay 2 Alarm Identifier A      | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                       | Data Type | Valid Values                                                                                                                                                                                   | Default Value |
|----------|--------------|----------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 28       | No           | Relay 3 Alarm Identifier A | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 29       | No           | Relay 4 Alarm Identifier A | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 30       | No           | Relay 5 Alarm Identifier A | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                       | Data Type | Valid Values                                                                                                                                                                                   | Default Value |
|----------|--------------|----------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 31       | No           | Relay 1 Alarm Identifier B | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 32       | No           | Relay 2 Alarm Identifier B | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 33       | No           | Relay 3 Alarm Identifier B | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                                                | Data Type | Valid Values                                                                                                                                                                                   | Default Value |
|----------|--------------|-----------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 34       | No           | Relay 4 Alarm Identifier B                          | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 35       | No           | Relay 5 Alarm Identifier                            | USINT     | 0 = Alarm 1 1 = Alarm 2 2 = Alarm 3 3 = Alarm 4 4 = Alarm 5 5 = Alarm 6 6 = Alarm 7 7 = Alarm 8 8 = Alarm 9 9 = Alarm 10 10 = Alarm 11 11 = Alarm 12 12 = Alarm 13 13 = Alarm 14 14 = Alarm 16 | 0             |
| 36       | Yes          | Channel 1 Vector<br>Measurement Speed Data<br>Units | USINT     | 0 = CPM<br>1 = Orders                                                                                                                                                                          | 0             |
| 37       | Yes          | Channel 2 Vector<br>Measurement Speed Data<br>Units | USINT     | 0 = CPM<br>1 = Orders                                                                                                                                                                          | 0             |
| 38       | No           | Channel 1 Band 1 Spectrum<br>Option                 | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum                                                                                                                                                      | 0             |
| 39       | No           | Channel 2 Band 1 Spectrum<br>Option                 | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum                                                                                                                                                      | 0             |
| 40       | No           | Channel 1 Band 2 Spectrum<br>Option                 | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum                                                                                                                                                      | 0             |
| 41       | No           | Channel 2 Band 2 Spectrum<br>Option                 | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum                                                                                                                                                      | 0             |
| 42       | No           | Channel 1 Band 3 Spectrum<br>Option                 | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum                                                                                                                                                      | 0             |
| 43       | No           | Channel 2 Band 3 Spectrum<br>Option                 | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum                                                                                                                                                      | 0             |

**Table C.30 Parameter Object Instances** 

| Instance | Read<br>Only | Name                                                     | Data Type | Valid Values                                      | Default Value |
|----------|--------------|----------------------------------------------------------|-----------|---------------------------------------------------|---------------|
| 44       | No           | Channel 1 Band 4 Spectrum<br>Option                      | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum         | 0             |
| 45       | No           | Channel 2 Band 4 Spectrum<br>Option                      | USINT     | 0 = Standard Spectrum<br>1 = gSE Spectrum         | 0             |
| 46       | No           | Poll Connection Produced<br>Connection Path <sup>1</sup> | USINT     | 101-106, 199 (Assembly<br>Object instance number) | 101           |
| 47       | No           | Poll Connection Produced<br>Connection Size <sup>1</sup> | UINT      | 4 - 124                                           | 124           |

<sup>1</sup> The Poll Connection Produced Connection Path and Size parameters cannot be set while the Poll connection is already established with a master/scanner. Attempting to do so will result in an "Object State Conflict" error (error code 0xC) These Parameter instances are a little more flexible than the actual Connection Object attributes because they can be set while the connection is in the NON-EXISTENT state (before the master/scanner allocates the connection).

**Table C.31 Parameter Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                 | Data Type                     | Description                                                       | Semantics                                                                       |
|---------|----------------|----------------------|-------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1       | Set            | Parameter<br>Value   |                               | Actual value of parameter                                         | See Table C.30 for a list of valid values for each instance.                    |
| 2       | Get            | Link Path Size       | USINT                         | Size of Link Path                                                 | 0 (These Parameter instances do not link directly to another object attribute.) |
| 3       | Get            | Link Path            | ARRAY of<br>DeviceNet<br>path | DeviceNet path to the object for the Parameter value.             |                                                                                 |
|         |                | Segment<br>Type/Port | ВҮТЕ                          | See DeviceNet Specification Volume 1 Appendix I for format.       |                                                                                 |
|         |                | Segment<br>Address   |                               | See DeviceNet<br>Specification Volume 1<br>Appendix I for format. |                                                                                 |

**Table C.31 Parameter Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name       | Data Type | Description                         | Semantics                                                                                                                                                                     |
|---------|----------------|------------|-----------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4       | Get            | Descriptor | WORD      | Description of Parameter            | Bit 0 = Settable Path support Bit 1 = Enum Strings support Bit 2 = Scaling support Bit 3 = Scaling Links support Bit 4 = Read Only Bit 5 = Monitor Bit 6 = Ext. Prec. scaling |
| 5       | Get            | Data Type  | EPATH     | Data Type Code                      | See DeviceNet Specification<br>Volume 1 Appendix J, Section<br>J-6.                                                                                                           |
| 6       | Get            | Data Size  | USINT     | Number of Bytes in Parameter value. |                                                                                                                                                                               |

**Table C.32 Parameter Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                                                |
|-----------------|----------------------|----------------------|------------------------------------------------------------|
| 0E <sub>h</sub> | Class/Instance       | Get_Attribute_Single | Returns the contents of the specified attribute.           |
| 10 <sub>h</sub> | Class                | Set_Attribute_Single | Sets the contents of the specified attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Acknowledge Handler Object (Class ID 2B<sub>H</sub>)

The Acknowledge Handler Object is used to manage the reception of message acknowledgments. This object communicates with a message producing Application Object within a device. The Acknowledge Handler Object notifies the producing application of acknowledge reception, acknowledge timeouts, and production retry limit errors.

#### **Class Attributes**

The Acknowledge Handler Object provides no class attributes.

#### **Instances**

A module provides only a single instance (instance 1) of the Acknowledge Handler Object. This instance is associated with instance 4 of the Connection Object, the slave COS connection to a higher level master.

## **Instance Attributes**

**Table C.33 Acknowledge Handler Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                                 | Data Type | Default Value |
|---------|----------------|--------------------------------------|-----------|---------------|
| 1       | Get/Set        | Acknowledge Timer                    | UINT      | 16ms          |
| 2       | Get/Set        | Retry Limit                          | USINT     | 1             |
| 3       | Get            | COS Producing<br>Connection Instance | UINT      | 4             |

## **Services**

**Table C.34 Acknowledge Handler Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 |
|-----------------|----------------------|----------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single |

# Alarm Object (Class ID 31D<sub>H</sub>)

The Alarm Object models a two-stage (alert and danger levels) alarm.

# **Class Attributes**

**Table C.35 Alarm Object Class Attributes** 

| Attr ID | Access<br>Rule | Name     | Data Type | Description                         | Semantics                                                                 |
|---------|----------------|----------|-----------|-------------------------------------|---------------------------------------------------------------------------|
| 1       | Get            | Revision | USINT     | Revision of the implemented object. | 2 (indicates that <b>Threshold Multiplier</b> is a REAL instead of USINT) |

# **Instances**

There are 16 instances of this object.

**Table C.36 Alarm Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                                          | Data Type | Description                                                                                                                            | Semantics                                                                                                                            |
|---------|----------------|-----------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Alarm Status                                  | 3 BITS    | The current status of the alarm.                                                                                                       | 0 = Normal<br>1 = Alert (alarm)<br>2 = Danger (shutdown)<br>3 = Disarm<br>4 = Xdcr Fault<br>5 = Module Fault<br>6 = Tachometer Fault |
| 4       | Get/Set        | Alarm Enable                                  | BOOL      | Indicates whether this alarm object is enabled.                                                                                        | 0 = Disabled<br>1 = Enabled                                                                                                          |
| 5       | Get/Set        | Туре                                          | USINT     | Type of Alarm                                                                                                                          | 0 = Magnitude<br>1 = Vector                                                                                                          |
| 6       | Get            | Threshold Units                               | USINT     | Indicates whether the threshold and hysteresis value are specified in units of measure. Not applicable to vector alarms.               | Set to 1<br>1 = Measurement units                                                                                                    |
| 7       | Get/Set        | Condition                                     | USINT     | Indicates on which side of<br>the threshold values the<br>alarm and danger<br>conditions exist. Not<br>applicable to vector<br>alarms. | 0 = Greater than<br>1 = Less than<br>2 = Inside range<br>3 = Outside range                                                           |
| 8       | Get/Set        | Alert Threshold<br>(High) (Clockwise)         | REAL      | The threshold value for the alert (alarm) condition (greater threshold for range types).                                               |                                                                                                                                      |
| 9       | Get/Set        | Danger Threshold<br>(High) (Clockwise)        | REAL      | The threshold value for the danger (shutdown) condition (greater threshold for range types).                                           |                                                                                                                                      |
| 10      | Get/Set        | Alert Threshold<br>Low<br>(Counterclockwise)  | REAL      | The lesser threshold value for the alert (alarm) condition for the range condition types.                                              |                                                                                                                                      |
| 11      | Get/Set        | Danger Threshold<br>Low<br>(Counterclockwise) | REAL      | The lesser threshold value for the danger (shutdown) condition for the range condition types.                                          |                                                                                                                                      |

**Table C.36 Alarm Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                               | Data Type                                                                                                                    | Description                                                                                                  | Semantics                                                                                                     |
|---------|----------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 12      | Get/Set        | Hysteresis                         | REAL                                                                                                                         | The amount on the safe side of a threshold by which the value must recover to clear the alarm.               |                                                                                                               |
| 13      | Get/Set        | Threshold (Setpoint<br>Multiplier) | REAL                                                                                                                         | Indicates how the thresholds should be adjusted when the setpoint multiplication function is invoked.        | 0 = Disable alarm<br>> 0 = Multiply the thresholds by<br>the value                                            |
| 14      | Get/Set        | Startup Period                     | UINT                                                                                                                         | The amount of time that the Threshold (Setpoint) Multiplier is applied after the startup signal is received. | Seconds                                                                                                       |
| 15      | Get/Set        | Speed Range<br>Enable              | BOOL Indicates whether this alarm is enabled only within a certain machin speed range.                                       |                                                                                                              | 0 = No speed range (alarm is<br>always enabled)<br>1 = Speed range (alarm only<br>enabled within speed range) |
| 16      | Get/Set        | Speed Range High                   | REAL Indicates the greater threshold of the machine speed range for which the alarm is enabled (disabled at greater speeds). |                                                                                                              | CPM<br>(must be greater than <b>Speed</b><br><b>Range Low</b> )                                               |
| 17      | Get/Set        | Speed Range Low                    | REAL Indicates the lesser threshold of the machine                                                                           |                                                                                                              | CPM<br>(Must be less than <b>Speed</b><br><b>Range High</b> )                                                 |
| 18      | Get/Set        | Name                               | STRING2 A name to help identify this alarm.                                                                                  |                                                                                                              |                                                                                                               |
| 19      | Get/Set        | Measurement<br>Identifier          | EPATH Identifies the measurement object to which this alarm is applied.                                                      |                                                                                                              | See Parameter Object instances 10 to 25.                                                                      |
| 20      | Get/Set        | Inhibit Tach Fault                 | BOOL                                                                                                                         | Determines whether the Tach Fault status is prohibited during the startup period.                            | 0 = Tach Fault allowed<br>1 = Tach Fault inhibited                                                            |

**Table C.37 Alarm Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Band Measurement Object (Class ID 31E<sub>H</sub>)

The Band Measurement Object models the measurement of the amplitude of a signal within a narrow frequency range.

## **Class Attributes**

The Band Measurement Object provides no class attributes.

#### **Instances**

There are 8 instances of this object.

**Table C.38 Band Measurement Object Instances** 

| Instance | Description                   |  |
|----------|-------------------------------|--|
| 1        | Channel 1 Band Measurement #1 |  |
| 2        | Channel 2 Band Measurement #1 |  |
| 3        | Channel 1 Band Measurement #2 |  |
| 4        | Channel 2 Band Measurement #2 |  |
| 5        | Channel 1 Band Measurement #3 |  |
| 6        | Channel 2 Band Measurement #3 |  |
| 7        | Channel 1 Band Measurement #4 |  |
| 8        | Channel 2 Band Measurement #4 |  |

## **Instance Attributes**

**Table C.39 Band Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                 | Data Type | Description                                                                   | Semantics                                                                                                                                                                                                                                                  |
|---------|----------------|----------------------|-----------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Band Value           | REAL      | The measured band value.                                                      | See Data Units                                                                                                                                                                                                                                             |
| 4       | Get            | Status               | BOOL      | Indicates if a fault or alarm has occurred.                                   | 0 = Operating without alarms or faults 1 = Alarm or fault condition exists, the <b>Band Value</b> attribute may not represent the actual field value.                                                                                                      |
| 5       | Get            | Data Units           | ENGUNIT   | The units context of the <b>Band Value</b> attribute.                         | This attribute is read only. It is set according to the <b>Output Data Units</b> attribute of the associated Channel Object instance. See page 153.                                                                                                        |
| 6       | Get/Set        | Measurement          | USINT     | The measurement (or calculation) performed to produce the <b>Band Value</b> . | 0 = RSS<br>1 = Peak                                                                                                                                                                                                                                        |
| 7       | Get/Set        | Minimum<br>Frequency | REAL      | The minimum frequency that is included in the band measurement.               |                                                                                                                                                                                                                                                            |
| 8       | Get/Set        | Maximum<br>Frequency | REAL      | The maximum frequency that is included in the band measurement.               | The Maximum Frequency must be greater than or equal to <b>Minimum Frequency</b> .                                                                                                                                                                          |
| 9       | Get/Set        | Frequency Units      | USINT     | The units of Minimum and Maximum Frequency.                                   | 0 = Hz<br>1 = Orders<br>Order based bands are only<br>supported when the<br>corresponding channel is<br>configured for synchronous<br>sampling. Selecting an order<br>based band on an asynchronous<br>channel will result in an invalid<br>configuration. |

# **Services**

**Table C.40 Band Measurement Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Channel Object (Class ID 31F<sub>H</sub>)

The Channel Object models "front-end" processing performed on an input signal before specific measurements are performed. This processing typically includes gain, filtering, and/or integration.

#### **Class Attributes**

The Channel Object provides no class attributes.

#### **Instances**

There are 4 instances of this object. Instance 1 and 2 correspond to the standard Channels 1 and 2, respectively. Instance 3 and 4 correspond to the gSE variety of Channels 1 and 2, respectively.

**Table C.41 Channel Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                                   | Data Type | Description                                                                                 | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|----------------|----------------------------------------|-----------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get/Set        | Output Data<br>Units                   | ENGUNIT   | The data units of the signal resulting from the signal processing performed in the channel. | See DeviceNet Specification Volume 1 Appendix K. Also see Parameter Object instances 3 and 4.  Valid values: g =1504 hex in/sec = 2B07 hex mils = 0800 hex psi = 1300 hex volt = 2D00 hex mm/s = 0900 hex µm = 2204 hex Pa = 1309 hex For instances 3 and 4, this value is fixed at gSE = 0A00.  This setting is directly related to the Sensitivity Units of the associated transducer and the Level of Integration performed on the channel. |
| 4       | Get            | Integration<br>Level of<br>Integration | USINT     | The level of integration to perform on the signal.                                          | 0 = None<br>1 = Single<br>2 = Double<br>For instances 3 and 4, this value<br>is fixed at 0 = None.                                                                                                                                                                                                                                                                                                                                             |

**Table C.41 Channel Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                                | Data Type | Description                                                                                                      | Semantics                                                                                                                                                                                                                                   |
|---------|----------------|-------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5       | Get/Set        | Low Cutoff<br>Frequency             | USINT     | The effective high pass filter (low frequency corner) selection.                                                 | 0 = Very low<br>1 = Low<br>2 = Medium<br>3 = High<br>4 = Very high<br>5 = Bypass                                                                                                                                                            |
|         | 0 /0           |                                     | D001      |                                                                                                                  | See attributes 100 to 104.                                                                                                                                                                                                                  |
| 6       | Get/Set        | Synchronous                         | BOOL      | Indicates whether this channel is synchronized with the tachometer signal.                                       | 0 = Asynchronous<br>1 = Synchronous<br>For instances 3 and 4, this value<br>is fixed at 0 = Asynchronous.                                                                                                                                   |
| 7       | Get/Set        | Internal Gear<br>Teeth              | UINT      | The number of gear teeth on the shaft of interest.                                                               | The Internal/External Gear<br>Teeth values are used when                                                                                                                                                                                    |
| 8       | Get/Set        | External Gear<br>Teeth              | UINT      | The number of gear teeth on the shaft used as the tachometer source.                                             | synchronous operation is selected but there is a known speed difference between the shaft of interest and the shaft used as the tachometer source.                                                                                          |
| 9       | Get/Set        | Name                                | STRING2   | A name to help identify this channel.                                                                            |                                                                                                                                                                                                                                             |
| 10      | Get/Set        | Full Scale                          | REAL      | The maximum signal expected to be processed by the channel.                                                      | Volts peak  Setting the Full Scale to a greater value allows the channel to handle greater input signals without saturating or clipping. Setting the Full Scale to a lesser value allows the signal to be measured with greater resolution. |
| 100     | Get            | Very Low HPF<br>Corner<br>Frequency | REAL      | The frequency, in Hz, of the "Very low" <b>Low Cutoff Frequency</b> option for attribute 5.                      | Hz                                                                                                                                                                                                                                          |
| 101     | Get            | Low HPF Corner<br>Frequency         | REAL      | The frequency, in Hz, of the "Low" <b>Low Cutoff Frequency</b> option for attribute 5.                           | Hz                                                                                                                                                                                                                                          |
| 102     | Get            | Medium HPF<br>Corner<br>Frequency   | REAL      | The frequency, in Hz, of the "Medium" <b>Low Cutoff Frequency</b> (low frequency corner) option for attribute 5. | Hz                                                                                                                                                                                                                                          |

**Table C.41 Channel Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                                 | Data Type | Description                                                                                  | Semantics |
|---------|----------------|--------------------------------------|-----------|----------------------------------------------------------------------------------------------|-----------|
| 103     | Get            | High HPF Corner<br>Frequency         | REAL      | The frequency, in Hz, of the "High" <b>Low Cutoff Frequency</b> option for attribute 5.      | Hz        |
| 104     | Get            | Very High HPF<br>Corner<br>Frequency | REAL      | The frequency, in Hz, of the "Very high" <b>Low Cutoff Frequency</b> option for attribute 5. | Hz        |

**Table C.42 Channel Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                                                                                                               |
|-----------------|----------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.                                                                                               |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup>                                                                                     |
| 4B <sub>h</sub> | Instance             | Auto_Range           | Automatically determines the optimal analog hardware range and sets the <b>Full Scale</b> value accordingly. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Auto\_Range

The Auto\_Range service calculates a new **Full Scale** value based upon the current input signal level. The caller can specify the maximum signal level that must be handled by the new hardware range in terms of a multiple of the current signal level. The Auto\_Range service determines the new **Full Scale** value, sets the **Full Scale** attribute, and returns the new value in the response.

The XM-122 must be in Run mode to perform the Auto\_Range service. Otherwise the "Object State Conflict" (General Error code 0x0C) is returned.

The "Busy" (object specific General Error code 0xD0) error response may be returned if the Auto\_Range service cannot be completed successfully.

Table C.43 Auto\_Range Request Parameters

| Name          | Data Type | Description of Request<br>Parameters                                                                                                           | Semantics of Values                   |
|---------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Safety Factor | REAL      | Specifies a multiple that, when applied to the current signal level, determines the maximum signal level that must be handled by the hardware. | Must be greater than or equal to 1.0. |

#### Table C.44 Auto\_Range Response Parameters

| Name       | Data Type | Description of Response<br>Parameters | Semantics of Values                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-----------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Full Scale | REAL      | The new <b>Full Scale</b> value.      | Specifies the maximum signal level expected to be processes by the channel. This value is used to determine the analog hardware range when the hardware supports programmable gain settings. Setting the Full Scale to a greater value allows the channel to handle greater input signals without saturating or clipping. Setting Full Scale to a lesser value allows the signal to be measured with greater resolution. The units of the Full Scale value is Volts peak. |

# Device Mode Object (Class ID 320<sub>H</sub>)

The Device Mode Object is used to control access to the configuration parameters in the module. This object's Device Mode attribute must be in PROGRAM mode to allow the module's configuration parameters to be "Set" (see Services). Attempts to set the configuration parameters while the Device Mode is in RUN mode will return an error. Note that the module collects measurements while in RUN mode but not while it is in PROGRAM mode.

#### **Class Attributes**

The Device Mode Object provides no class attributes.

#### **Instance Attributes**

**Table C.45 Device Mode Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                | Data Type | Description                                                               | Semantics                                                                                                                   |
|---------|----------------|---------------------|-----------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 3       | Get/Set        | Device Mode         | UINT      | The operating mode of the module.                                         | 0 = Power Up<br>1 = RUN<br>2 = PROGRAM                                                                                      |
| 199     | Set            | Backdoor<br>Service | USINT     | Setting this attribute is equivalent to requesting the specified service. | Set to one of the following values to perform the specified service:  0x05 = Reset 0x09 = Delete 0x15 = Restore 0x16 = Save |

Setting the **Device Mode** attribute to "1" (RUN) is equivalent to executing the **Start** service. Setting the **Device Mode** attribute to "2" (PROGRAM) is equivalent to executing the **Stop** service.

## **Services**

**Table C.46 Device Mode Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                                                                                                                            |
|-----------------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Return the value of a single attribute.                                                                                                |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Set the value of a single attribute.                                                                                                   |
| 07 <sub>h</sub> | Instance             | Stop                 | Transitions from Run to the Program state.                                                                                             |
| 06 <sub>h</sub> | Instance             | Start                | Validate the device configuration settings and transition to the Run state if OK.                                                      |
| 05 <sub>h</sub> | Instance             | Reset                | Transition to the Power Up state. Load the non-volatile configuration and transition to the Run state if saved configuration restored. |

**Table C.46 Device Mode Object Services** 

| Service<br>Code | Class/Instance Usage | Name    | Description                                                                                   |
|-----------------|----------------------|---------|-----------------------------------------------------------------------------------------------|
| 16 <sub>h</sub> | Instance             | Save    | Validate the device configuration settings if necessary and save them to non-volatile memory. |
| 09 <sub>h</sub> | Instance             | Delete  | Delete the saved configuration from non-volatile memory.                                      |
| 15 <sub>h</sub> | Instance             | Restore | Load the saved configuration or the factory default configuration from non-volatile memory.   |

# Overall Measurement Object (Class ID 322<sub>H</sub>)

The Overall Measurement Object models the measurement of the amplitude of a signal including a wide frequency range.

## **Class Attributes**

The Overall Measurement Object provides no class attributes.

#### **Instances**

There are 2 instances of this object.

**Table C.47 Overall Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name          | Data Type | Description    | Semantics                                                                                                                                                                                                                                                         |
|---------|----------------|---------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Overall Value | REAL      | Measured value | The output value of the measurement performed by the Overall Measurement Object on the input signal. The result of the measurement process specified by <b>Measurement</b> is converted to the units specified by <b>Data Units</b> to produce the Overall Value. |

**Table C.47 Overall Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name          | Data Type | Description                                                                                                                               | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4       | Get            | Status        | BOOL      | Indicates if a fault or alarm has occurred.                                                                                               | 0 = Operating without alarms or faults. 1 = Alarm of fault condition exists. The <b>Overall Value</b> attribute may not represent the actual field value.                                                                                                                                                                                                                                                                                                                                                                                    |
| 5       | Get            | Data Units    | ENGUNIT   | The units context of the <b>Overall Value</b> attribute.                                                                                  | This setting is determined by the Channel Object's <b>Output Data Units</b> attribute (see page 153).                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6       | Get/Set        | Measurement   | USINT     | The measurement (or calculation) performed to produce the <b>Overall Value</b> .                                                          | 0 = RMS<br>1 = RMS peak<br>2 = RMS pk-to-pk<br>3 = Peak<br>4 = Peak-to-peak<br>5-255 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7       | Get/Set        | Time Constant | REAL      | The detection time constant associated with the output smoothing filter (for the RMS and DC meters) or the decay rate of the peak meters. | For RMS type measurements, the Time Constant attribute specifies the 3-db bandwidth for the digital filtering used to calculate the <b>Overall Value</b> . The 3-db bandwidth is roughly equal to (1/Time Constant). The greater the value of the Time Constant, the longer the response of the measured <b>Overall Value</b> to change in the input signal.  For Peak type measurements, the Time Constant value specifies the decay rate of the peak detection meter. The greater the Time Constant value, the slower the Peak is decayed. |

**Table C.47 Overall Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                            | Data Type | Description                                                                                                       | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------|---------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8       | Get/Set        | Damping Factor                  | REAL      | The damping factor associated with output smoothing filter for the RMS and DC meters (not used with peak meters). | O.7072 to 1.0  The Damping Factor is used in conjunction with the Time  Constant to vary the characteristics of the response of the filter used in calculating the Overall Value. An Overall Value for a measurement with Damping Factor near 1.0 will slowly rise or fall for the full settling time specified by the Time Constant before reaching the final value. An Overall Value for a measurement with a Damping Factor near 0.7072 will rise or fall quickly and may overshoot the final value before reaching the final value for a given input signal.  The Damping Factor is only used in conjunction with RMS measurement types. |
| 9       | Get/Set        | Overall Filter                  | USINT     | Overall filter type applied to the input signal before the measurement is performed.                              | 0 = None<br>1 = Low Pass Filter<br>2-255 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10      | Get/Set        | Low Pass<br>Corner<br>Frequency | UINT      | The corner frequency of the low pass filter.                                                                      | The Low Pass Corner Frequency only has meaning while <b>Overall Filter</b> is set to Low Pass Filter and single integration is performed on the signal (see page 64).                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

**Table C.48 Overall Measurement Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Relay Object (Class ID 323<sub>H</sub>)

The Relay Object models a relay (actual or virtual). A relay can be activated or deactivated based on the status of one or more alarms.

## **Class Attributes**

**Table C.49 Relay Object Class Attributes** 

| Attr ID | Access<br>Rule | Name                   | Data Type | Description                                                                     | Semantics                                                                                                                                                                                                                                                                      |
|---------|----------------|------------------------|-----------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Number of<br>Instances | UINT      | Number of Instances in this class.                                              | 5                                                                                                                                                                                                                                                                              |
| 100     | Set            | Reset All              | USINT     | Setting this attribute is<br>equivalent to executing<br>the Class Reset service | Reset All is an attribute that provides a way to perform a Class level Reset service via the Set_Attribute_Single service. Setting this attribute to any value is equivalent to performing the Class level Reset service. Reading the Reset All attribute always returns zero. |

#### Instances

There are 5 instances of this object.

**Table C.50 Relay Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name            | Data Type | Description                                                                       | Semantics                                                                   |
|---------|----------------|-----------------|-----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 3       | Get            | Relay Status    | BOOL      | The current status of the relay.                                                  | 0 = Off<br>1 = On                                                           |
| 4       | Get/Set        | Relay Enable    | BOOL      | Indicates whether this relay object is enabled.                                   | 0 = Disabled<br>1 = Enabled                                                 |
| 5       | Get/Set        | Latch Enable    | BOOL      | Indicates whether this relay latches (requires a reset command to deactivate).    | 0 = Nonlatching<br>1 = Latching                                             |
| 6       | Get/Set        | Failsafe Enable | BOOL      | Indicates whether this relay is normally energized (activated during power loss). | 0 = Non-failsafe (not normally energized) 1 = Failsafe (normally energized) |

**Table C.50 Relay Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                  | Data Type | Description                                                                                                                             | Semantics                                                                                                                                                                                                                                                                                                                                              |
|---------|----------------|-----------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | Get/Set        | Delay                 | USINT     | The time period that the voting logic must be true before the relay is activated.                                                       | 0 to 25.5 seconds<br>(specified in tenths of seconds)                                                                                                                                                                                                                                                                                                  |
| 8       | Get/Set        | Name                  | STRING2   | A name to help identify the relay.                                                                                                      | 18 characters maximum                                                                                                                                                                                                                                                                                                                                  |
| 9       | Get/Set        | Alarm Level           | ВУТЕ      | Specifies what alarm status values will cause the relay to activate.                                                                    | 0 = Normal<br>1 = Alert<br>2 = Danger<br>3 = Disarm<br>4 = Xdcr Fault<br>5 = Module Fault<br>6 = Tachometer Fault                                                                                                                                                                                                                                      |
| 10      | Get/Set        | Alarm Identifier<br>A | EPATH     | Identifies the first alarm status the relay monitors.                                                                                   | See Parameter Object instances 26 to 30.                                                                                                                                                                                                                                                                                                               |
| 11      | Get/Set        | Alarm Identifier<br>B | EPATH     | Identifies the second alarm status the relay monitors.                                                                                  | See Parameter Object instances 31 to 35.                                                                                                                                                                                                                                                                                                               |
| 12      | Get/Set        | Logic                 | USINT     | Indicates the number of associated alarms that must have a status value specified by <b>Alarm Level</b> in order to activate the relay. | 0 = Ignore Alarm Identifier B and activate the relay based on the status of Alarm Identifier A. 1 = Activate the relay if the status of either Alarm Identifier A or B matches any of the statuses specified by Alarm Level. 2 = Activate the relay if the status of both Alarm Identifier A and B match any of the statuses specified by Alarm Level. |
| 14      | Get            | Relay Installed       | BOOL      | Indicates whether an actual relay is associated with this instance.                                                                     | 0 = Not installed<br>1 = Installed                                                                                                                                                                                                                                                                                                                     |

**Table C.51 Relay Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 05 <sub>h</sub> | Class/Instance       | Reset                | Resets latched relay(s).              |
| 0E <sub>h</sub> | Class/Instance       | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Class/Instance       | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Spectrum Waveform Measurement Object (Class ID 324<sub>H</sub>)

The Spectrum/Waveform Measurement Object models a spectrum and waveform measurement.

#### **Class Attributes**

The Spectrum/Waveform Measurement Object provides no class attributes.

#### Instances

There are 4 instances of this object. Instance 1 and 2 are the conventional measurements for Channels 1 and 2, respectively. Instance 3 and 4 are the gSE measurements for Channels 1 and 2, respectively. Instance 3 and 4 only support a gSE spectrum, and not a waveform. A "resource unavailable" error is returned in response to the Get\_Waveform\_Chunk service to instances 3 and 4. Also note that the gSE spectrums in instances 3 and 4 have a **Data Format** of "real data." This is different from instances 1 and 2, which have "complex data."

**Table C.52 Spectrum Waveform Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                            | Data Type | Description                                                                              | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|----------------|---------------------------------|-----------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Status                          | BOOL      | Indicates if a fault or alarm has occurred.                                              | 0 = Operating without alarms or faults. 1 = Alarm or fault condition exists. The Spectrum and Waveform data may not represent the actual field value.                                                                                                                                                                                                                                                                                                                     |
| 4       | Get            | Data Units                      | ENGUNIT   | The units context of the <b>Data</b> attributes.                                         | This setting is determined by the Channel Object's <b>Output Data Units</b> attribute (see page 153.                                                                                                                                                                                                                                                                                                                                                                      |
| 5       | Get            | Domain                          | USINT     | The domain used for the spectrum and waveform measurements.                              | 0 = Frequency/Time<br>1 = Order/Position                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6       | Get/Set        | FMAX                            | REAL      | The maximum frequency or order of the spectrum data.                                     | 0-20000 Hz if <b>Domain</b> = 0. There are several predetermined FMAX settings for which spectrum data can be produced. If you select an unsupported value, then the next greater supported FMAX value will be used for the spectrum data.  4-40 Orders if <b>Domain</b> = 1.The <b>Number of Lines</b> value must be evenly divisible by the FMAX value or an Invalid Device Configuration error will be returned during the Device Mode Object Start and Save services. |
| 7       | Get/Set        | Number of<br>Spectrum Lines     | UDINT     | Number of lines or bins in the spectrum data.                                            | 100, 200, 400, or 800                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8       | Get/Set        | Window Type                     | USINT     | The window function to be applied to the waveform data prior to computing the spectrum.  | 0 = Rectangular<br>1 = Hamming<br>2 = Hanning<br>3 = Flat Top<br>4 = Kaiser Bessel                                                                                                                                                                                                                                                                                                                                                                                        |
| 9       | Get/Set        | Period                          | REAL      | The period of the waveform.                                                              | Seconds if <b>Domain</b> = 0.<br>Cycles if <b>Domain</b> = 1.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10      | Get            | Number of<br>Waveform<br>Points | UDINT     | Number of points in the waveform data.                                                   | 256, 512, 1024, or 2048                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11      | Get            | Overlap                         | USINT     | The percent overlap applied to the waveform data sets used for calculating the spectrum. | Only 0% supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

**Table C.52 Spectrum Waveform Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                  | Data Type | Description                                                                         | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|----------------|-----------------------|-----------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12      | Get            | Data Format           | USINT     | The format of the spectrum data.                                                    | 0 = Complex data For instances 3 and 4, this value equals 1, which is Real data                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13      | Get            | Average Type          | USINT     | The type of averaging performed.                                                    | 0 = Asynchronous (spectrum) 1 = Synchronous (waveform)  Determined by the  Synchronous attribute of the Channel Object.  When set to Asynchronous, consecutive spectrum measurements are averaged together to produce the  Spectrum data.  When set to asynchronous, synchronized waveforms are averaged together to produce the Waveform data, and the Spectrum data is produced from the averaged waveform. A trigger source from a tachometer, for example, is required to obtain the synchronized waveforms. |
| 14      | Get/Set        | Number of<br>Averages | UINT      | The number of individual data sets to be incorporated into the average calculation. | 0 = Invalid<br>1 = No averaging<br>> 1 = Averaging                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**Table C.53 Spectrum Waveform Measurement Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                                    |
|-----------------|----------------------|----------------------|------------------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.                    |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup>          |
| 4B <sub>h</sub> | Instance             | Get_Spectrum_Chunk   | Upload a portion of the current Spectrum data. |

| Service<br>Code | Class/Instance Usage | Name                          | Description                                    |
|-----------------|----------------------|-------------------------------|------------------------------------------------|
| 4C <sub>h</sub> | Instance             | Get_Waveform_Chunk            | Upload a portion of the current Waveform data. |
| 4D <sub>h</sub> | Instance             | Get_Stored_Spectrum_<br>Chunk | Upload a portion of the stored Spectrum data.  |
| 4E <sub>h</sub> | Instance             | Get_Stored_Waveform_<br>Chunk | Upload a portion of the stored Waveform data.  |

**Table C.53 Spectrum Waveform Measurement Object Services** 

# Get\_Stored\_Spectrum\_Chunk/Get\_Stored\_Waveform\_Chunk

These services function just like Get\_Spectrum\_Chunk and Get\_Waveform\_Chunk (described below) except they operate on the stored spectrum or waveform data rather than the current spectrum or waveform data. A spectrum or waveform data set is stored in conjunction with the triggered trend's trigger event if the triggered trend is enabled. The **Storage Option** attribute determines whether the spectrum or waveform data is stored.



The gSE spectrum is not stored (these services will return a "resource unavailable" error for instances 3 and 4).

# **Get\_Spectrum\_Chunk/Get\_Waveform\_Chunk**

These services return a portion of the respective data structure. It is likely that the spectrum and waveform data structures will be too large to transfer over the network in one message. These services allow the data structures to be transferred over the network in smaller portions so that the explicit message buffer does not need to be so large.

The Spectrum Data structure contains an array of values that, taken together, are the output of the spectrum measurement performed by the Spectrum/Waveform Measurement Object on the input signal. The size of the Spectrum Data structure and format of the data array depends on the **Data** 

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

**Format** attribute. In all cases, the spectrum data array values are normalized and must be converted to floating point to obtain the true values.

**Table C.54 Spectrum Data Structure** 

| Byte (DWORD)<br>offset within<br>structure | Structure Member            | Data Type            | Description                                                                                                                                                                                                                                        |
|--------------------------------------------|-----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (0)                                      | Number of Spectrum<br>Lines | UDINT                | Number of lines or bins in the spectrum data. This should be equal to the <b>Number of Spectrum Lines</b> attribute setting. It is provided within this structure to assist in determining the size of the structure.                              |
| 4 (1)                                      | FMAX                        | REAL                 | The maximum frequency or order of the spectrum data. This is the actual FMAX of the spectrum data and may vary from the <b>FMAX</b> attribute setting.                                                                                             |
| 8 (2)                                      | Amplitude<br>Reference      | REAL                 | Normalization factor This factor is used to convert the normalized array data into floating point values.                                                                                                                                          |
| 12 (3)                                     | Normalized Value<br>Array   | Array of INT or UINT | The normalized spectrum data points These must be converted to floating point values using the Amplitude Reference value. The <b>Data Format</b> attribute determines whether these are INT or UINT and exactly what conversion should be applied. |

The total size of the Spectrum Data structure in DWORD is:

- For Real or Power Data Format: 3 + (Number of Spectrum Lines / 2)
- For Complex Data Format: 3 + (Number of Spectrum Lines)

If the data format is Real Data or Power Data then the **Normalized Value Array** is an array of UINT (16-bit unsigned integers ranging from 0 to 65535). The number of UINTs in the spectrum data array is equal to the **Number of Spectrum Lines**. To convert the normalized spectrum data into floating point values, use the following equation:

Float Data<sub>n</sub> = Amplitude Reference 
$$\frac{\text{Normalized Data}_n}{65536}$$

Where **Float Data**<sub>n</sub> is the value for the nth spectrum bin, and  $0 \le n \le$  **Number of Spectrum Line**.

The **Float Data** value represents an amplitude value if Data Format is real data. The **Float Data** represents a power value if Data Format is power data.

If the data format is Complex Data then the **Normalized Value Array** is an array of INT (16-bit signed integers ranging from -32768 to 32767). There are two INTs (real and imaginary values) in the array for each spectrum bin (the array size is twice the **Number of Spectrum Lines**). To convert the

normalized spectrum data into real and imaginary values, use the following equations:

Real Data<sub>n</sub> = Amplitude Reference 
$$\frac{\text{Normalized Data}_{2n}}{32768}$$

Imaginary Data<sub>n</sub> = Amplitude Reference 
$$\frac{\text{Normalized Data}_{(2n+1)}}{32768}$$

Where **Real Data**<sub>n</sub> and **Imaginary Data**<sub>n</sub> are the real and imaginary values for the nth spectrum bin, and  $0 \le n \le$ **Number of Spectrum Line**.

The **Real Data** and **Imaginary Data** values are converted into magnitude and phase values with the following equations:

Magnitude 
$$Data_n = \sqrt{Real Data_n^2 + Imaginary Data_n^2}$$

Phase 
$$Data_n = arctan \left( \frac{Imaginary Data_n}{Real Data_n} \right)$$

The Waveform Data structure contains an array of values that, taken together, are the output of the sampling performed by the Spectrum/Waveform Measurement Object on the input signal. The Waveform Data array values are normalized and must be converted to floating point to obtain the true values.

**Table C.55 Waveform Data Structure** 

| Byte (DWORD)<br>offset within<br>structure | Structure Member             | Data Type    | Description                                                                                                                                                                                                     |
|--------------------------------------------|------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (0)                                      | Number of<br>Waveform Points | UDINT        | Number of points in the waveform data. This should be equal to the <b>Number of Waveform Points</b> attribute setting. It is provided within this structure to assist in determining the size of the structure. |
| 4 (1)                                      | Period                       | REAL         | The period of the waveform.  This is the actual period of the waveform and may vary from the <b>Period</b> attribute setting.                                                                                   |
| 8 (2)                                      | Amplitude<br>Reference       | REAL         | Normalization factor This factor is used to convert the normalized array data into floating point values.                                                                                                       |
| 12 (3)                                     | Normalized Value<br>Array    | Array of INT | The normalized waveform data points These must be converted to floating point values using the Amplitude Reference value.                                                                                       |

The total size of the Waveform Data structure in DWORDs is: 3 + (**Number of Waveform Points** / 2)

The Waveform Data is an array of INT (16-bit signed integers ranging from -32768 to 32767). The number of INTs in the Waveform Data array is equal to the **Number of Waveform Points**. To convert the normalized Waveform Data into floating point values, use the following equations:

Float Data<sub>n</sub> = Amplitude Reference 
$$\frac{\text{Normalized Data}_n}{32768}$$

Where **Float Data**<sub>n</sub> is the value for the nth waveform point, and  $0 \le n \le$  **Number of Waveform Points**.

The Get\_Spectrum\_Chunk and Get\_Waveform\_Chunk services use the same request and response parameters.

Table C.56 Get\_Spectrum\_Chunk/Get\_Waveform\_Chunk Request Parameters

| Name                    | Data Type | Description of Request<br>Parameters                                           | Semantics of Values                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial DWORD<br>Offset | UINT      | The offset of the first 32-bit value within the data structure to be returned. | 0 <= offset < size of the data structure in DWORDs. For example: offset = 0 refers to bytes 0-3 (the number of lines or points value) offset = 1 refers to bytes 4-7 (the FMAX or period values) offset = 2 refers to bytes 8-11 (the amplitude reference value) offset = 3 refers to bytes 12-15 (the first pair of normalized values) offset = 4 refers to bytes 16-19 (the second pair of normalized values) |
| Number of DWORDs        | USINT     | The number of 32-bit values from the data structure to be returned.            | This should be small enough to fit in the explicit message buffer. This will likely be less than the total size of the data structure so that several calls to the service will be required to get the entire data structure.                                                                                                                                                                                   |

Table C.57 Get\_Spectrum\_Chunk/Get\_Waveform\_Chunk Response Parameters

| Name             | Data Type         | Description of Response<br>Parameters                                                                                                     | Semantics of Values                                                                                                                             |
|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of DWORDs | USINT             | The number of 32-bit values actually returned in the Data Chunk array of the response. (Can be less than the number of DWORDs requested.) | If less DWORDs are returned than were requested, the end of the data structure has been reached (the request went beyond the end of the array). |
| Data Chunk       | Array of<br>DWORD | The requested portion of the data structure.                                                                                              |                                                                                                                                                 |

# (Class ID 325<sub>H</sub>)

**Speed Measurement Object** The Speed Measurement Object models a speed measurement of a tachometer signal.

# **Class Attributes**

The Speed Measurement Object provides no class attributes.

**Table C.58 Speed Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name        | Data Type | Description                                 | Semantics                                                                                                                                               |
|---------|----------------|-------------|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Speed Value | REAL      | The measured speed value.                   | CPM                                                                                                                                                     |
| 4       | Get            | Status      | BOOL      | Indicates if a fault or alarm has occurred. | 0 = Operating without alarms or faults. 1 = Alarm or fault condition exists. The <b>Speed Value</b> attribute may not represent the actual field value. |

**Table C.58 Speed Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name             | Data Type | Description                                                                                                                   | Semantics    |
|---------|----------------|------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5       | Get            | Maximum<br>Speed | REAL      | The maximum (peak) measured speed value (positive or negative) since the most recent reset.                                   | CPM          |
| 12      | Get/Set        | Time Constant    | UINT      | The time constant value used for exponential averaging of the <b>Speed Value</b> (a low pass filter/output smoothing filter). | Milliseconds |
| 13      | Get            | Acceleration     | REAL      | The rate of change of the <b>Speed Value</b> .                                                                                | CPM/min      |

## **Services**

**Table C.59 Speed Measurement Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 05 <sub>h</sub> | Instance             | Reset                | Clears Maximum (Peak) speed to 0.     |
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Tachometer Channel Object (Class ID 326<sub>H</sub>)

The Tachometer Channel Object models "front end" processing performed on a tachometer signal before specific measurements are performed.

## **Class Attributes**

The Tachometer Channel Object provides no class attributes.

## **Instance Attributes**

**Table C.60 Tachometer Channel Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                                  | Data Type | Description                                                                      | Semantics                                                                                                                                                                                                                                                                                      |
|---------|----------------|---------------------------------------|-----------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get/Set        | Number of<br>Pulses per<br>Revolution | UINT      | The number of signal pulses per revolution of the shaft (number of gear teeth).  | 0 = Tachometer disabled<br>> 0 = Tachometer enabled                                                                                                                                                                                                                                            |
| 4       | Get/Set        | Auto Trigger                          | BOOL      | Indicates whether the trigger level is determined automatically from the signal. | 0 = Use specified <b>Trigger Level</b><br>and <b>Hysteresis</b><br>1 = Determine trigger level and<br>hysteresis automatically                                                                                                                                                                 |
| 5       | Get/Set        | Trigger Level                         | REAL      | The signal level to be used as the trigger.                                      | Volts                                                                                                                                                                                                                                                                                          |
| 6       | Get/Set        | Trigger Slope                         | USINT     | The slope of the signal at the threshold crossing to be used as the trigger.     | 0 = Positive<br>1 = Negative                                                                                                                                                                                                                                                                   |
| 7       | Get/Set        | Trigger<br>Hysteresis                 | REAL      | The amount of hysteresis around the trigger level.                               | In <b>Auto Trigger</b> mode, this value is a percentage of the peak-to-peak input signal and can range from 0 to 50%. In <b>Manual Trigger</b> mode, this value is a voltage level (the hysteresis voltage is added or subtracted to the threshold voltage to determine the hysteresis range). |
| 8       | Get/Set        | Name                                  | STRING2   | A name to help identify this channel.                                            | 18 characters maximum                                                                                                                                                                                                                                                                          |
| 10      | Get/Set        | Fault Time-out                        | USINT     | Number of seconds with no pulses before a Tach Fault is indicated.               | 1 to 64 seconds                                                                                                                                                                                                                                                                                |

## **Services**

**Table C.61 Tachometer Channel Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Transducer Object (Class ID 328<sub>H</sub>)

The Transducer Object models a transducer.

## **Class Attributes**

The Transducer Object provides no class attributes.

### **Instances**

There are 3 instances of this object. Transducer Object instance 1 is for vibration channel 1. Transducer Object instance 2 is for vibration channel 2, and Transducer Object instance 3 is for the tachometer channel.

## **Instance Attributes**

**Table C.62 Transducer Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                 | Data Type | Description                                                                                                                                    | Semantics                                                                                                                                                                                                                             |
|---------|----------------|----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | DC Bias              | REAL      | The measured average DC bias of the transducer signal in volts.                                                                                | Volts                                                                                                                                                                                                                                 |
| 4       | Get            | Status               | BOOL      | Indicates whether a transducer fault exists (the measured <b>DC Bias</b> is outside the range specified by <b>Fault High</b> and <b>Low</b> ). | 0 = No fault<br>1 = A transducer fault exists                                                                                                                                                                                         |
| 5       | Get/Set        | Sensitivity<br>Value | REAL      | Value of the sensitivity of<br>the transducer in<br>millivolts per <b>Sensitivity</b><br><b>Units</b> .                                        |                                                                                                                                                                                                                                       |
| 6       | Get/Set        | Sensitivity Units    | ENGUNIT   | Units of the denominator of the <b>Sensitivity Value</b> .                                                                                     | See DeviceNet Specification Volume 1 Appendix K. Also see Parameter Object instances 1 and 2.  Valid values: g =1504 hex in/sec = 2B07 hex mils = 0800 hex psi = 1300 hex volt = 2D00 hex mm/s = 0900 hex µm = 2204 hex Pa = 1309 hex |

**Table C.62 Transducer Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                     | Data Type | Description                                                                                                                     | Semantics                                                                                               |
|---------|----------------|--------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 7       | Get/Set        | Fault High               | REAL      | The maximum expected DC Bias voltage from the transducer in volts.                                                              | Volts                                                                                                   |
| 8       | Get/Set        | Fault Low                | REAL      | The minimum expected DC Bias voltage from the transducer in volts.                                                              | Volts                                                                                                   |
| 9       | Get/Set        | Power Type               | USINT     | Indicates the type of power supplied to the transducer.                                                                         | 0 = No power supplied<br>1 = Constant current (IEPE<br>accelerometer)<br>2 = Constant voltage (IRD 941) |
| 13      | Get/Set        | DC Bias Time<br>Constant | REAL      | The time constant value used for exponential averaging of the <b>DC Bias</b> value (a low pass filter/output smoothing filter). | Seconds                                                                                                 |

## **Services**

**Table C.63 Transducer Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |

<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

Vector Measurement Object (Class ID 329<sub>H</sub>)

The Vector Measurement Object models the measurement of the amplitude and phase of the input signal at a specific multiple of the machine speed.

## **Class Attributes**

The Vector Measurement Object provides no class attributes.

## **Instances**

There are 6 instances of this object.

**Table C.64 Vector Measurement Object Instances** 

| Instance | Description                     |
|----------|---------------------------------|
| 1        | Channel 1 1X Vector Measurement |
| 2        | Channel 2 1X Vector Measurement |
| 3        | Channel 1 2X Vector Measurement |
| 4        | Channel 2 2X Vector Measurement |
| 5        | Channel 1 3X Vector Measurement |
| 6        | Channel 2 3X Vector Measurement |

## **Instance Attributes**

**Table C.65 Vector Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name               | Data Type | Description                                 | Semantics                                                                                                                                          |
|---------|----------------|--------------------|-----------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | Get            | Magnitude<br>Value | REAL      | The measured magnitude value.               |                                                                                                                                                    |
| 4       | Get            | Phase Value        | REAL      | The measured phase value.                   | Degrees  Note: Note valid for instances 5 and 6.                                                                                                   |
| 5       | Get            | Status             | BOOL      | Indicates if a fault or alarm has occurred. | 0 = Operating without alarms of faults. 1 = Alarm or fault condition exists. The <b>Value</b> attributes may not represent the actual field value. |

**Table C.65 Vector Measurement Object Instance Attributes** 

| Attr ID | Access<br>Rule | Name                    | Data Type | Description                                                | Semantics                                                                                                                                                                                                                 |
|---------|----------------|-------------------------|-----------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6       | Get            | Magnitude Data<br>Units | ENGUNIT   | The units context of the <b>Magnitude Value</b> attribute. | This setting is determined by the Channel Object's <b>Output Data Units</b> setting (see page 153).                                                                                                                       |
| 7       | Get            | Speed Value             | REAL      | The speed at which the magnitude and phase are measured.   | Instances 1 and 2 use 1X machine speed. Instances 3 and 4 use 2X machine speed. Instances 5 and 6 use 3X machine speed. The value is only valid when synchronous sampling mode is selected for the corresponding channel. |
| 8       | Get            | Speed Data<br>Units     | ENGUNIT   | The units context of the <b>Speed Value</b> attribute.     | See DeviceNet Specification Volume 1 Appendix K.  This is set to Orders (0x0B00).                                                                                                                                         |

## **Services**

**Table C.66 Vector Measurement Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                 |
|-----------------|----------------------|----------------------|-----------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute. |

# 4-20 mA Output Object (Class ID 32A<sub>H</sub>)

The 4-20 mA Output Object models the configuration of a 4-20 mA output signal.

## **Class Attributes**

The 4-20 mA Output Object provides no class attributes.

## **Instances**

There are 2 instances of this object.

## **Instance Attributes**

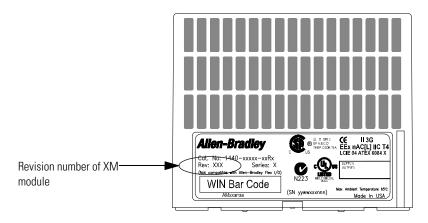
Table C.67 4-20 mA Output Object Instance Attributes

| Attr ID | Access<br>Rule | Name                           | Data Type | Description                                                                                                | Semantics                                                                                 |
|---------|----------------|--------------------------------|-----------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 3       | Get/Set        | Value                          | REAL      | The current output value.                                                                                  | mA                                                                                        |
| 4       | Get/Set        | Enable                         | BOOL      | Indicates whether this<br>4-20 mA output is<br>enabled.                                                    | 0 = Disabled<br>1 = Enabled                                                               |
| 5       | Get/Set        | Max Range                      | REAL      | The measured value associated with 20 mA.                                                                  |                                                                                           |
| 6       | Get/Set        | Min Range                      | REAL      | The measured value associated with 4 mA.                                                                   |                                                                                           |
| 7       | Get/Set        | Measurement<br>Identifier Path | ЕРАТН     | Identifies the class, instance, and attribute of a measurement value that this 4-20 mA output is tracking. | See Parameter Object Instances 7 and 8.  See DeviceNet Specification Volume 1 Appendix I. |

## Services.

**Table C.68 4-20mA Output Object Services** 

| Service<br>Code | Class/Instance Usage | Name                 | Description                           |
|-----------------|----------------------|----------------------|---------------------------------------|
| 0E <sub>h</sub> | Instance             | Get_Attribute_Single | Returns a single attribute.           |
| 10 <sub>h</sub> | Instance             | Set_Attribute_Single | Sets a single attribute. <sup>1</sup> |


<sup>1</sup> Attributes can only be set while the device is in Program Mode. See the description of the Device Mode Object for more information.

# Wiring Connections for Previous Module Revisions

Appendix D provides the terminal block assignments and wiring connections of earlier revisions of the XM-122 module (before revision D01). If you have a later revision of the module, refer to Chapter 2 for wiring information.

The revision number can be found on the product label which is located on the front of the XM module (see Figure D.1).

Figure D.1 Location of Revision Number on Product Label



# Terminal Block Assignments

The terminal block assignments and descriptions of an earlier revision of the XM-122 module are shown on page 180





The terminal block assignments are different for different XM modules. The following table applies only to the XM-122 module (before revision D01).

### WARNING



#### **EXPLOSION HAZARD**

Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.

Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.

#### **Terminal Block Assignments**

| No. | Name                       | Description                                                                                                                                                          |
|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Xducer 1 (+)               | Vibration transducer 1 connection                                                                                                                                    |
| 1   | Xducer 2 (+)               | Vibration transducer 2 connection                                                                                                                                    |
| 2   | Buffer 1 (+)               | Vibration signal 1 buffered output                                                                                                                                   |
| 3   | Buffer 2 (+)               | Vibration signal 2 buffered output                                                                                                                                   |
| 4   | Tach/Signal In (+)         | Tachometer transducer/signal input, positive side                                                                                                                    |
| 5   | Xducer Vin                 | Vibration transducer power input                                                                                                                                     |
| 6   | Xducer V (+)               | Vibration transducer power supply output, positive side connect to Xducer Vin for positive biased transducers or Xducer RTN for negative biased transducers          |
| 7   | TxD                        | PC serial port, transmit data                                                                                                                                        |
| 8   | RxD                        | PC serial port, receive data                                                                                                                                         |
| 9   | XRTN <sup>1</sup>          | Circuit return for TxD and RxD                                                                                                                                       |
| 10  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                          |
| 11  | 4-20 mA 1 (+)              | 4-20 mA output                                                                                                                                                       |
| 12  | 4-20 mA 1 (-)              | 300 ohm maximum load                                                                                                                                                 |
| 13  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                          |
| 14  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                          |
| 15  | Chassis                    | Connection to DIN rail ground spring or panel mounting hole                                                                                                          |
| 16  | Xducer 1 (-) <sup>1</sup>  | Vibration transducer 1 connection                                                                                                                                    |
| 17  | Xducer 2 (-) <sup>1</sup>  | Vibration transducer 2 connection                                                                                                                                    |
| 18  | Signal Common <sup>1</sup> | Vibration buffered output return                                                                                                                                     |
| 19  | TACH Buffer                | Tachometer transducer/signal output                                                                                                                                  |
| 20  | Tachometer (-)             | Tachometer transducer/signal input, negative side and TACH Buffer return                                                                                             |
| 21  | Xducer V (-)               | Vibration transducer power supply output, negative side connect to Xducer RTN for positive biased transducer or Xducer Vin for negative biased transducers and power |
| 22  | Xducer RTN                 | Vibration transducer power return                                                                                                                                    |
| 23  | CAN_High                   | DeviceNet bus connection, high differential (white wire)                                                                                                             |

## **Terminal Block Assignments**

| No. | Name                     | Description                                                                                                                                                                                                  |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24  | CAN_Low                  | DeviceNet bus connection, low differential (blue wire)                                                                                                                                                       |
| 25  | +24 V Out                | Internally connected to 24 V In 1 (terminal 44) Used to daisy chain power if XM modules are not plugged into each other                                                                                      |
| 26  | DNet V (+)               | DeviceNet bus power, positive side (red wire)                                                                                                                                                                |
| 27  | DNet V (-)               | DeviceNet bus power, negative side (black wire)                                                                                                                                                              |
| 28  | 24 V Common <sup>1</sup> | Internally connected to 24 V Common (terminals 43 and 45) Used to daisy chain power if XM modules are not plugged into each other If power is not present on terminal 44, there is no power on this terminal |
| 29  | 4-20 mA 2 (+)            | 4-20 mA output                                                                                                                                                                                               |
| 30  | 4-20 mA 2 (-)            | 300 ohm maximum load                                                                                                                                                                                         |
| 31  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 32  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 33  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 34  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 35  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 36  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 37  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 38  | Chassis                  | Connection to DIN rail ground spring or panel mounting hole                                                                                                                                                  |
| 39  | SetPtMult                | Switch input to activate Set Point Multiplication (active closed)                                                                                                                                            |
| 40  | Switch RTN               | Switch return, shared between SetPtMult and Reset Relay                                                                                                                                                      |
| 41  | Reset Relay              | Switch input to reset internal relay (active closed)                                                                                                                                                         |
| 42  | +24 V In 2               | Connection to secondary external +24 V power supply, positive side; used when redundant power supplies are required                                                                                          |
| 43  | 24 V Common <sup>1</sup> | Connection to external +24 V power supply, negative side (internally DC-coupled to circuit ground)                                                                                                           |
| 44  | +24 V In 1               | Connection to primary external +24 V power supply, positive side                                                                                                                                             |
| 45  | 24 V Common <sup>1</sup> | Connection to external +24 V power supply, negative side (internally DC-coupled to circuit ground)                                                                                                           |
| 46  | Relay N.C. 1             | Relay Normally Closed contact 1                                                                                                                                                                              |
| 47  | Relay Common 1           | Relay Common contact 1                                                                                                                                                                                       |
| 48  | Relay N.O. 1             | Relay Normally Open contact 1                                                                                                                                                                                |
| 49  | Relay N.O. 2             | Relay Normally Open contact 2                                                                                                                                                                                |
| 50  | Relay Common 2           | Relay Common contact 2                                                                                                                                                                                       |
| 51  | Relay N.C. 2             | Relay Normally Closed contact 2                                                                                                                                                                              |
|     | •                        | •                                                                                                                                                                                                            |

<sup>1</sup> Terminals are internally connected and isolated from the Chassis terminals.

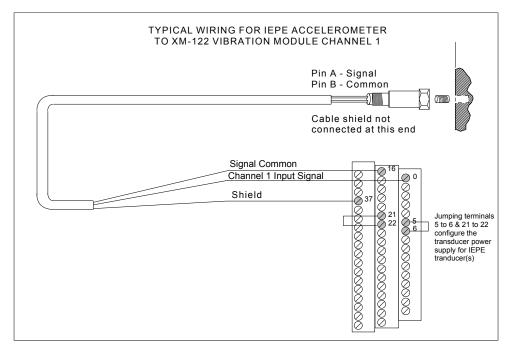
## **Connecting the Transducer**

The XM-122 can accept input from any Allen-Bradley non-contact eddy current probe, a standard IEPE accelerometer, or a DC voltage output measurement device such as a velocity or pressure transducer.

## **Connecting an IEPE Accelerometer**

Figures D.2 and D.3 show the wiring of an IEPE accelerometer to an earlier revision of the XM-122 module (before revision D01).






You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 179).

**IMPORTANT** 

The internal transducer power supply is providing power to the IEPE accelerometer. Make certain the **IEPE Power** parameter is enabled. Refer to Channel Transducer Parameters on page 58.

Figure D.2 IEPE Accelerometer to Channel 1 Wiring



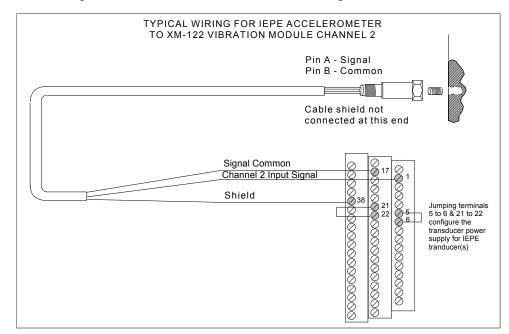



Figure D.3 IEPE Accelerometer to Channel 2 Wiring

## **Connecting a Non-Contact Sensor**

Figures D.4 and D.5 show the wiring of a non-contact sensor to an earlier revision of the XM-122 module (before revision D01).





You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 179).

**IMPORTANT** 

The internal transducer power supply is providing power to the non-contact sensor.

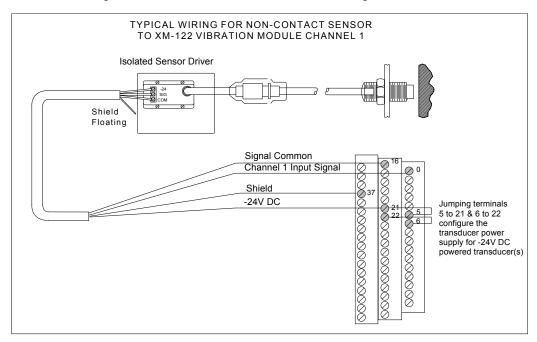
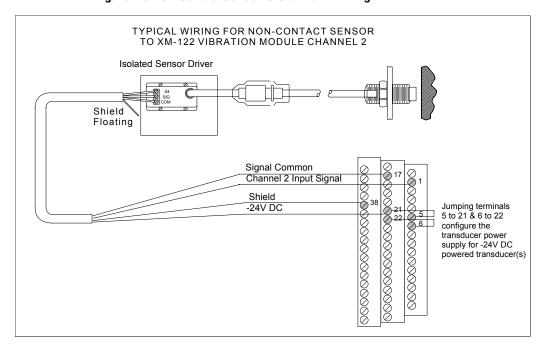
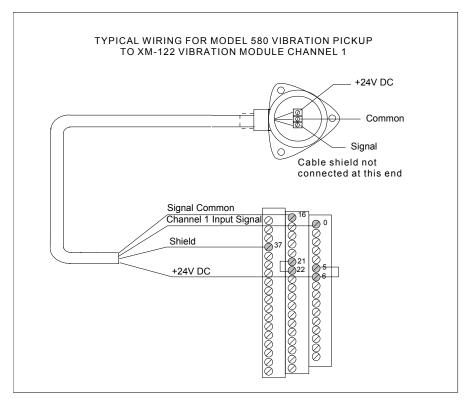




Figure D.4 Non-Contact Sensor to Channel 1 Wiring

Figure D.5 Non-Contact Sensor to Channel 2 Wiring



## **Connecting a Powered Sensor**


Figures D.6 and D.7 show the wiring of a powered sensor, such as the Model 580 Vibration Pickup, to an earlier version of the XM-122 module (before D01).





You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 179).

Figure D.6 Powered Sensor to Channel 1 Wiring



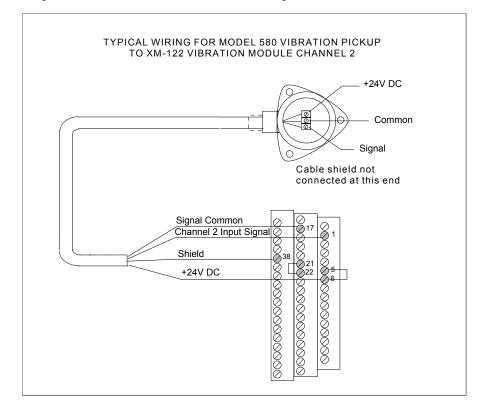



Figure D.7 Powered Sensor to Channel 2 Wiring

## **Connecting Two Accelerometers and a Non-Contact Sensor**

Figure D.8 shows the wiring of two IEPE accelerometers and a non-contact sensor to an earlier revision of the XM-122 module (before revision D01). The IEPE accelerometers are wired to channel 1 and channel 2. The non-contact sensor is wired to the tachometer input signal.



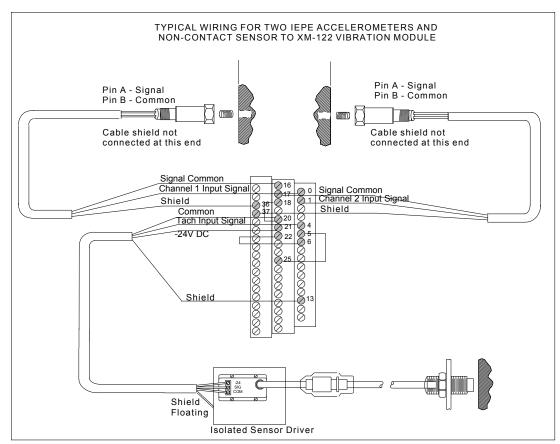


You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 179).

**IMPORTANT** 

The buffered outputs are valid for all signals in this wiring scheme.

#### **IMPORTANT**


The module's 24 V power supply (terminal 25) is providing 24 V power to the IEPE accelerometer constant current diodes. Refer to Appendix A for power specifications.

Make certain the **IEPE Power** parameter is enabled for both channel 1 and channel 2. Refer to Channel Transducer Parameters on page 58.

**IMPORTANT** 

Transducer DC bias is monitored on all signals.

Figure D.8 Two IEPE Accelerometers and a Non-Contact Sensor Wiring



## **Connecting a Velocity Sensor and Two Non-Contact Sensors**

Figure D.9 shows the wiring of a velocity sensor and two non-contact sensors to an earlier revision of the XM-122 module (before revision D01). The velocity sensor is wired to channel 1. The first non-contact sensor is wired to channel 2, and the other non-contact sensor is wired to the tachometer signal.

#### **ATTENTION**



You may ground the cable shield at either end of the cable. Do not ground the shield at both ends. Recommended practice is to ground the cable shield at the terminal base and not at the transducer. Any convenient Chassis terminal may be used (see Terminal Block Assignments on page 179).

#### **IMPORTANT**

The buffered outputs are valid for all signals in this wiring scheme. Note that buffered output for channel 1 is limited to one diode drop above -24 V to one diode below +5 V.

#### **IMPORTANT**

Transducer DC bias is monitored on all signals.

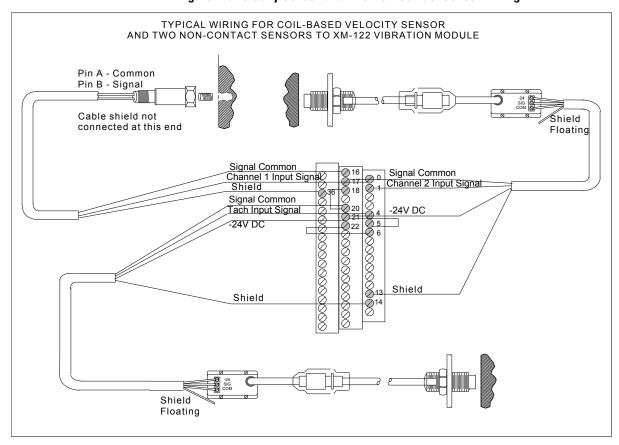



Figure D.9 Velocity Sensor and Two Non-Contact Sensor Wiring

# **Guidelines for Setting the Full Scale Value**

Appendix E provides tables to help you determine the optimal value to use for the Channel Transducer **Full Scale** setting in the XM-122 module. The signal conditioning circuitry in the module adjusts its dynamic range based upon the value entered in this setting. The full scale value is a voltage level that is dependent upon your monitoring application and other XM configuration settings.

In order to use these tables and to properly select the Full Scale value, you need to know the following information.

- Maximum Vibration Level This is the maximum instantaneous peak
  vibration level that can be expected at the sensor location (under any
  monitoring condition) in the units of vibration that will be used for
  monitoring. For example, if monitoring will be done in velocity then you
  must know the maximum vibration in ips or mm/s that can exist at the
  machine.
- High Pass Filter (HPF) Setting In applications that require integration of the native units, the high pass filter setting impacts the full scale signal range. For example, an application that uses an accelerometer whose native units is g's, and is integrated to provide a velocity output in ips or mm/s, requires you to know what high pass filter setting is used in order to best select the Full Scale value.
- Maximum High Frequency Peak Amplitude (in g's) This variable must be considered in applications where an acceleration input is integrated to velocity (ips, mm/s) or displacement (mils, µm) and where high frequency (>5 kHz) acceleration signals are likely present. Such signals are most common in machinery such as gear sets and any machine that is fitted with rolling element bearings. This variable can be measured with a portable instrument or it can be measured using the XM module and associated configuration tool.

TIP

Refer to Channel Transducer Parameters on page 58 for more information on the Channel Transducer Full Scale parameter.

TIP

Refer to gSE Parameters on page 69 for configuring the gSE Full Scale parameter.

## **XM-122 Full Scale Tables**

Use the following tables to help you determine the optimal Full Scale value for the XM-122 module. Refer to the table that corresponds to the units of vibration that will be used for monitoring.

Table E.1 XM-122 Measuring Acceleration with Accelerometer (100 mV/g)

| Max Vibration Level |         | F       | ull Scale Settin | ıg       |            |
|---------------------|---------|---------|------------------|----------|------------|
| g's peak            | 1Hz HPF | 5Hz HPF | 10Hz HPF         | 40Hz HPF | 1000Hz HPF |
| 1                   |         |         | 0.1              |          |            |
| 5                   |         |         | 0.75             |          |            |
| 10                  | 1       |         |                  |          |            |
| 30                  | 3       |         |                  |          |            |
| 40                  | 4       |         |                  |          |            |
| 50                  |         |         | 5                |          |            |

Table E.2 XM-122 Measuring Velocity with Accelerometer (100 mV/g)

| Max Vibration Level |          | Full Scale Setting |         |          |          |            | Max High Frequency Peak Amplitude |
|---------------------|----------|--------------------|---------|----------|----------|------------|-----------------------------------|
| ips peak            | mm/s RMS | 1Hz HPF            | 5Hz HPF | 10Hz HPF | 40Hz HPF | 1000Hz HPF | (g pk)                            |
| 0.3                 | 10       |                    | 0.005   | 0.01     | 0.03     | 0.75       | 4                                 |
| 1                   | 40       |                    |         |          |          |            | 4                                 |
| 3                   | 100      | N/A                | 0.009   | 0.018    | 0.072    | N/A        | 4                                 |
| 10                  | 360      | ·                  | 0.085   | 0.17     | 0.67     | ,          | 12                                |
| 30                  | 1000     |                    | 0.25    | 0.5      | 2.2      |            | 40                                |
| 100                 | 3600     |                    | 0.83    | 1.66     | 6.66     |            | 120                               |

Table E.3 XM-122 Measuring Displacement with Accelerometer (100 mV/g)

| Max Vibration Level |                | Full Scale Setting |         |          |          |            | Max High Frequency Peak Amplitude |
|---------------------|----------------|--------------------|---------|----------|----------|------------|-----------------------------------|
| mils pp             | micrometers pp | 1Hz HPF            | 5Hz HPF | 10Hz HPF | 40Hz HPF | 1000Hz HPF | (g pk)                            |
| 10                  | 250            |                    | 0.01    | 0.02     | 0.07     |            |                                   |
| 20                  | 500            | N/A                | 0.03    | 0.06     | 0.25     | N/A        | 4                                 |
| 30                  | 750            | ,                  | 0.04    | 0.07     | 0.3      | ,          |                                   |
| 50                  | 1250           |                    | 0.05    | 0.09     | 0.4      |            |                                   |

Table E.4 XM-122 Measuring Velocity with Velocimeter (100 mV/ips)

| Max Vibration Level |          | Full Scale Setting |         |          |          |            |
|---------------------|----------|--------------------|---------|----------|----------|------------|
| ips peak            | mm/s RMS | 1Hz HPF            | 5Hz HPF | 10Hz HPF | 40Hz HPF | 1000Hz HPF |
| 3                   | 100      |                    |         | 0.75     |          |            |
| 10                  | 360      | 1                  |         |          |          |            |
| 20                  | 700      | 2                  |         |          |          |            |
| 30                  | 1000     |                    |         | 3        |          |            |

Table E.5 XM-122 Measuring Displacement with Velocimeter (100 mV/ips)

| Max Vibration Level |                | Full Scale Setting |         |          |          |            |
|---------------------|----------------|--------------------|---------|----------|----------|------------|
| mils pp             | micrometers pp | 1Hz HPF            | 5Hz HPF | 10Hz HPF | 40Hz HPF | 1000Hz HPF |
| 5                   | 125            |                    | 0.05    | 0.1      | 0.35     |            |
| 10                  | 250            | N/A                | 0.1     | 0.2      | 0.7      | N/A        |
| 50                  | 1250           | ,                  | 0.15    | 0.3      | 1.05     | ,          |

Table E.6 XM-122 Measuring Displacement with Displacement Sensor (200 mV/mil)

| Max Vibration Level |                |         | F       | ull Scale Settin | g        |            |
|---------------------|----------------|---------|---------|------------------|----------|------------|
| mils pp             | micrometers pp | 1Hz HPF | 5Hz HPF | 10Hz HPF         | 40Hz HPF | 1000Hz HPF |
| 5                   | 1250           |         | 1       | .5               |          | NI /A      |
| 50                  | 1250           |         | 1       | 0                |          | N/A        |

## **Example on Using Table**

The following example shows you how to use the Full Scale table to determine the optimal Full Scale value.



Application: XM-122 with 100 mV/g accelerometer

Units used for monitoring: velocity, ips

High Pass Filter: 10 Hz

Maximum vibration level: 5 ips pk (360 mm/s RMS)

To determine the optimal Full Scale value, follow these steps.

- 1. Refer to Table E.2 XM-122 Measuring Velocity with Accelerometer (100 mV/g) on page 192.
- **2.** Under the Maximum Vibration Level column, select the row that corresponds to 10 ips.



Since the maximum vibration level of 5 ips is greater than 3 ips, it is necessary to refer to the next higher level in the table, which in this case is 10 ips.

- **3.** Under the 10 Hz High Pass Filter (HPF) column, find the recommended **Full Scale Setting**. The recommended Full Scale Setting for the 10 Hz High Pass Filter is 0.17.
- **4.** Refer to the value under the Max High Frequency Peak Amplitude column to verify that there are not any signals present at the sensor that exceed this value. For the example above, the Max High Frequency Peak Amplitude value is 12 g's.

If there are signals in excess of this level then increase the Full Scale value to the next higher value, 0.5 in this example. If there are no extraneous signals that exceed this value then proceed with setting the Full Scale at the selected value, 0.17 in this example.

## **IMPORTANT**

Step 4 is necessary only in applications where an acceleration input is integrated to velocity (ips, mm/s) or displacement (mils,  $\mu$ m) and where high frequency (>5 kHz) acceleration signals are likely present.

#### alarm

An alarm alerts you to a change in a measurement. For example, an alarm can notify you when the measured vibration level for a machine exceeds a pre-defined value.

#### Automatic Device Replacement (ADR)

A means for replacing a malfunctioning device with a new unit, and having the device configuration data set automatically. The ADR scanner uploads and stores a device's configuration. Upon replacing a malfunctioning device with a new unit (MAC ID 63), the ADR scanner automatically downloads the configuration data and sets the MAC ID (node address).

#### band

A frequency range, such as the frequency range between 1,800 and 3,200 Hz.

#### baud rate

The baud rate is the speed at which data is transferred on the DeviceNet network. The available data rates depend on the type of cable and total cable length used on the network:

| Maximum Cable Length   |                   |                 |                 |  |
|------------------------|-------------------|-----------------|-----------------|--|
| Cable                  | 125 K             | 250 K           | 500 K           |  |
| Thick Trunk Line       | 500 m (1,640 ft.) | 250 m (820 ft.) | 100 m (328 ft.) |  |
| Thin Trunk Line        | 100 m (328 ft.)   | 100 m (328 ft.) | 100 m (328 ft.) |  |
| Maximum Drop Length    | 6 m (20 ft.)      | 6 m (20 ft.)    | 6 m (20 ft.)    |  |
| Cumulative Drop Length | 156 m (512 ft.)   | 78 m (256 ft.)  | 39 m (128 ft.)  |  |

The XM measurement modules' baud rate is automatically set by the bus master. You must set the XM-440 Relay module's baud rate. You set the XM-440 Master Relay to 125 kb, 250 kb, 500 kb, or Autobaud if another device on the network has set the baud rate.

#### **Bit-Strobe**

A multicast transfer of data sent by a master device to all the XM slaves on the network. The bit-strobe command message contains a bit string of 64 bits (8 bytes) of output data, one output bit per node address on the network.

#### bus off

A bus off condition occurs when an abnormal rate of errors is detected on the Control Area Network (CAN) bus in a device. The bus-off device cannot receive or transmit messages on the network. This condition is often caused by corruption of the network data signals due to noise or baud rate mismatch.

#### Change of State (COS)

DeviceNet communications method in which the XM module sends data based on detection of any changed value within the input data (alarm or relay status).

#### current configuration

The current configuration is the most recently loaded set of configuration parameters in the XM module's memory. When power is cycled, the current configuration is loaded with either the saved configuration (in EEPROM) or the factory defaults (if there is no saved configuration). In addition, the current configuration contains any configuration changes that have been downloaded to the module since power was applied.

#### DeviceNet network

A DeviceNet network uses a producer/consumer Controller Area Network (CAN) to connect devices (for example, XM modules). A DeviceNet network can support a maximum of 64 devices. Each device is assigned a unique node address (MAC ID) and transmits data on the network at the same baud rate.

A cable is used to connect devices on the network. It contains both the signal and power wires. General information about DeviceNet and the DeviceNet specification are maintained by the Open DeviceNet Vendor's Association (ODVA). ODVA is online at http://www.odva.org.

#### disarm state

See Program mode.

#### **EEPROM**

See NVS (Non-Volatile Storage).

#### Electronic Data Sheet (EDS) Files

EDS files are simple text files that are used by network configuration tools such as RSNetWorx for DeviceNet to describe products so that you can easily commission them on a network. EDS files describe a product device type, revision, and configurable parameters.

#### gSE measurement

A special type of signal processing. gSE, or Spike Energy, is useful for detecting low amplitude, high frequency signals characteristic of bearing and gearbox defects.

#### gSE spectrum

A special type of spectrum measurement using gSE signal processing. gSE, or Spike Energy, is useful for detecting low amplitude, high frequency signals characteristic of bearing and gearbox defects.

#### Help window

A window that contains help topics that describe the operation of a program. These topics may include:

- An explanation of a command.
- A description of the controls in a dialog box or property page.
- Instructions for a task.
- Definition of a term.

#### high pass filter

A filter that excludes all frequencies below a defined frequency. It allows, or passes, frequencies above the defined frequency. It is useful for removing low frequency signal components that would dominate the signal.

#### low pass filter

A low pass filter excludes frequencies above a defined frequency. It allows, or passes, frequencies below the defined frequency. It is useful as an anti-aliasing filter.

#### **MAC ID**

See node address.

#### master device

A device which controls one or more slave devices. The XM-440 Master Relay module is a master device.

#### **Node Address**

A DeviceNet network can have as many as 64 devices connected to it. Each device on the network must have a unique node address between 0 and 63. Node address 63 is the default used by uncommissioned devices. Node address is sometimes called "MAC ID."

#### **NVS (Non-Volatile Storage)**

NVS is the permanent memory of an XM module. Modules store parameters and other information in NVS so that they are not lost when the module loses power (unless Auto Save is disabled). NVS is sometimes called "EEPROM."

#### orders

Multiples of the operating speed of a piece of equipment. The first order is the operating speed. The second order is two times the operating speed, and so on.

#### online help

Online help allows you to get help for your program on the computer screen by pressing **F1.** The help that appears in the Help window is context sensitive, which means that the help is related to what you are currently doing in the program.

#### Polled

DeviceNet communications method in which module sends data in response to a poll request from a master device.

#### Program mode

The XM module is idle. Typically this occurs when the module configuration settings are being updated with the XM Configuration program. In Program mode, the signal processing/measurement process is stopped. The status of the alarms is set to the disarm state to prevent a false alert or danger status.

#### Run mode

In Run mode, the module collects measurement data and monitors each measurement device.

#### setting time

The amount of time it takes a measurement to reach 90% of the final value given a step change in the input signal.

#### signal detection

Defines the method of conditioning or measuring a dynamic input signal. Peak (0 to the peak voltage), Peak-Peak (minimum peak to maximum peak), and RMS (square root of the mean of the square of the values) are the most common methods of signal detection.

#### slave device

A device that receives and responds to messages from a Master device but does not initiate communication. Slave devices include the XM measurement modules, such as the XM-120 Dynamic Measurement module and the XM-320 Position module.

#### Spike Energy

Spike Energy is a measure of the intensity of energy generated by transient or mechanical impacts. These impacts or pulses typically occur as a result of surface flaws in rolling-element bearings, gear teeth, or other metal-to-metal contacts, such as rotor rub, insufficient bearing lubrication, etc.

Spike Energy measurement utilizes an accelerometer to detect the vibration energy over a pre-determined high frequency range. The mechanical impacts tend to excite the mounted natural frequencies of the accelerometers as well as the natural frequencies of machine components and structures in this high frequency range. These resonant frequencies act as carrier frequencies and the bearing defect frequency modulates with the carriers. The intensity of impact energy is a function of pulse amplitude and repetition rate. The signal induced by such impacts can be measured by accelerometers and processed by a unique filtering and detection circuitry. The measured magnitude of the signal is expressed in "gSE" units (acceleration units of Spike Energy).

#### startup/coast-down trend

A speed-base trend that is collected in an XM module during the startup or coast-down of a machine when the measured machine speed crosses into a defined speed range.

#### strobe

See Bit-Strobe.

#### transducer

A transducer is a device for making measurements. These include accelerometers, velocity pickups, displacement probes, and temperature sensors.

#### trend

A set of records of one or more measurement parameter(s) collected at regular intervals based on time or speed.

#### trigger

An event that prompts the collection of trend data.

#### triggered trend

A time-base trend that is collected in an XM module when a relay on the XM is activated, or when the module receives a trigger event.

#### virtual relay

A virtual relay is a non-physical relay. It has the same capabilities (monitor alarms, activation delay, change status) as a physical relay only without any physical or electrical output. The virtual relay provides additional relay status inputs to a controller, PLC, or an XM-440 Master Relay module (firmware revision 5.0 and later).

#### XM configuration

XM configuration is a collection of user-defined parameters for XM modules.

#### XM Serial Configuration Utility software

XM Serial Configuration Utility software is a tool for monitoring and configuring XM modules. It can be run on computers running Windows 2000 service pace 2, Windows NT 4.0 service pack 6, or Windows XP operating systems.

| Numerics                                    | C                                              |
|---------------------------------------------|------------------------------------------------|
| <b>24V</b> common grounding requirements 12 | Channel Object 153                             |
| 4-20mA Output Object 176                    | Channel Status indicator 51                    |
| 4-20mA output parameters 82                 | channel transducer parameters 58               |
| Enable 82                                   | DC Bias Time Constant 59                       |
| Max Range 82                                | Eng. Units 59                                  |
| Measurement 82                              | Fault High 59                                  |
| Min Range 82                                | Fault Low 59                                   |
| 4-20mA outputs, wiring 44                   | IEPE Power 58                                  |
|                                             | Sensitivity 58                                 |
| A                                           | Class Instance Editor 105                      |
|                                             | components                                     |
| Acknowledge Handler Object 147              | XM-122 gSE Vibration module 3                  |
| Alarm Object 148                            | XM-441 Expansion Relay module 3                |
| alarm parameters 74                         | XM-940 terminal base 2                         |
| Alarm Number 74                             | configuration parameters 55                    |
| alarm type 74                               | 4-20mA output parameters 82                    |
| Alert Threshold (High) 76                   | alarm parameters 74                            |
| Alert Threshold (Low) 76<br>Condition 75    | band measurement parameters 66                 |
| Danger Threshold (High) 76                  | channel transducer parameters 58               |
|                                             | data parameters 89                             |
| Danger Threshold (Low) 76<br>Enable 74      | device mode parameters 93                      |
| Hysteresis 76                               | gSE parameters 69                              |
| Inhibit Tachometer Fault 77                 | I/O data parameters 88                         |
| Measurement 74                              | overall measurement parameters 63              |
| Name 74                                     | relay parameters 78                            |
| Speed Range Enable 77                       | signal processing parameters 60                |
| Speed Range High 78                         | spectrum/waveform parameters 65                |
| Speed Range Low 78                          | speed measurement parameters 69                |
| Startup Period 76                           | SU/CD trend parameters 85                      |
| Threshold Multiplier 77                     | sum harmonics measurement parameters 64        |
| Analog Input Point Object 136               | tachometer parameters 71                       |
| Assembly Object 123                         | triggered trend parameters 83                  |
| Automatic Device Replacement (ADR) 116      | connecting wiring 17                           |
| , , , , , , , , , , , , , , , , , , ,       | 4-20mA outputs 44                              |
| р                                           | buffered outputs 27                            |
| В                                           | DeviceNet 46                                   |
| Band Measurement Object 151                 | power supply 21                                |
| band measurement parameters 66              | relays 22                                      |
| Maximum Frequency 67                        | remote relay reset signal 42<br>serial port 45 |
| Measurement 67                              | setpoint multiplication switch 43              |
| Minimum Frequency 67                        | tachometer 25                                  |
| Spectrum Option 66                          | terminal base XM-940 17                        |
| baud rate 48                                | transducers 29, 182                            |
| bit-strobe message format 115               | Connection Object 133                          |
| buffered outputs, wiring 27                 | conventional mode 56                           |
|                                             | COS message format 114                         |
|                                             | ooo messaye wimat 114                          |

D

| data parameters 89                  | automatic device replacement (ADR) 110          |
|-------------------------------------|-------------------------------------------------|
| 1X Magnitude Value 90               | EDS files 103                                   |
| 1X Phase Value 90                   | I/O message formats 107                         |
| 2X Magnitude Value 90               | invalid device configuration errors 106         |
| 2X Phase Value 90                   | setting the Device Mode parameter 103           |
| 3X Magnitude Value 90               | XM services 105                                 |
| 4-20mA Output A 91                  | DeviceNet Object 122                            |
| 4-20mA Output B 91                  | DeviceNet objects                               |
| Acceleration 91                     | 4-20mA Output 176                               |
| Alarm Status 92                     | Acknowledge Handler 147                         |
| Band Measured Value 89              | Alarm 148                                       |
| Band Measurement 89                 | Analog Input Point 136                          |
| Band Measurement Status 89          | Assembly 123                                    |
| DC Gap Voltage 89                   | Band Measurement 151                            |
| Gap Value 89                        | Channel 153                                     |
| Get Waveform Data Only 90           | Connection 133                                  |
| gSE Overall value 91                | Device Mode 156                                 |
| gSE Status 91                       | DeviceNet 122                                   |
| Measured DC Bias 89                 | Discrete Input Point 135                        |
| Not 1X and Vector Status 90         | Identity 120                                    |
| Not 1X Value 90                     | Overall Measurement 158                         |
| Overall Value 89                    | Parameter 138                                   |
|                                     | Relay 161                                       |
| Peak Speed 91                       | Spectrum Waveform Measurement 163               |
| Relay Status 92                     | Speed Measurement 170                           |
| Spectrum/Waveform Status 90         | Tachometer Channel 171                          |
| Speed Status 90                     | Transducer 173                                  |
| Speed Value 91                      | Vector Measurement 174                          |
| Sum Harmonics Value 89              | DIN Rail Grounding Block 9                      |
| Transducer 3 Measured DC Bias 91    | DIN rail grounding requirements 8               |
| Transducer 3 Status 90              | Discrete Input Point Object 135                 |
| Transducer Fault 89                 | document conventions 4                          |
| Transducer Status 89                |                                                 |
| Xdcr DC Bias 91                     | _                                               |
| description                         | E                                               |
| configuration parameters 55         | Electronic Data Sheet (EDS) files 103           |
| XM-122 module 3                     |                                                 |
| XM-441 module 3                     | F                                               |
| XM-940 terminal base 2              | Full Scale                                      |
| Device Mode Object 156              |                                                 |
| Device Mode parameter 93, 103       | guidelines for setting 191<br>XM-122 tables 192 |
| Device Mode parameters              | AIVI-122 lables 192                             |
| Autobaud 93                         |                                                 |
| Device Mode 93, 103                 | G                                               |
| DeviceNet connection                | grounding requirements $8$                      |
| baud rate 48                        | 24V common 12                                   |
| node address 47                     | DeviceNet 12                                    |
| wiring 46                           | DIN rail 8                                      |
| DeviceNet grounding requirements 12 | panel/wall mount 10                             |
|                                     | panoly wall mount 10                            |

**DeviceNet information** 

| grounding requirements (continued)      | M                                                           |
|-----------------------------------------|-------------------------------------------------------------|
| switch input 13                         | measurement modes 56                                        |
| transducers 12                          | conventional mode 56                                        |
| gSE mode 56                             | gSE mode 56                                                 |
| gSE parameters 69                       | Module Status (MS) indicator 50                             |
| FMAX 70                                 | mounting                                                    |
| gSE Full Scale 70                       | terminal base unit on DIN rail 13                           |
| High Pass Filter 70                     | terminal base unit on panel/walll 16                        |
| Number of Averages 71                   | XM-122 module on terminal base 48                           |
| Number of Lines 70                      |                                                             |
| Output Data Unit 70                     | N                                                           |
| Window Type 71                          | <del></del>                                                 |
| guidelines for setting full scale 191   | Network Status (NS) indicator 51                            |
|                                         | node address 47                                             |
|                                         | normally closed relay contacts 22                           |
| I/O data parameters 88                  | normally open relay contacts 22                             |
| Assembly Instance Table 88              | Not1X measurements 90                                       |
| COS Output 88                           |                                                             |
| COS Size 88                             | 0                                                           |
| Custom Assembly 88                      | operating mode                                              |
| Poll Output 88                          | program mode 50, 103                                        |
| Poll Response Assembly 88               | run mode 50, 103                                            |
| Poll Size 88                            | Overall Measurement Object 158                              |
| I/O message formats                     | overall measurement parameters 63                           |
| bit-strobe messages 115                 | Low Pass Filter 64                                          |
| change of state (COS) messages 114      | Overall Damping Factor 64                                   |
| poll messages 107                       | Overall Filter 64                                           |
| XM status values 114                    | Overall Time Constant 63                                    |
| Identity Object 120                     | Signal Detection 63                                         |
| indicators 49                           |                                                             |
| Channel Status 51                       | Р                                                           |
| Module Status 50                        |                                                             |
| Network Status 51                       | panel/wall mount grounding requirements 10                  |
| Relay 51                                | Parameter Object 138                                        |
| Setpoint Multiplier 51                  | <b>poll message format</b> 107<br>Assembly instance 101 108 |
| Tachometer Status 51                    | Assembly instance 101 108 Assembly instance 102 109         |
| installation requirements               | Assembly instance 102 109 Assembly instance 103 110         |
| grounding 8                             | Assembly instance 103 110 Assembly instance 104 111         |
| power 6                                 | Assembly instance 104 111 Assembly instance 105 112         |
| wiring 6                                | Assembly instance 103 112 Assembly instance 106 113         |
| interconnecting terminal base units 15  | power requirements 6                                        |
| introduction 1                          | power supply, wiring 21                                     |
| invalid device configuration errors 106 | program mode 50, 103                                        |
|                                         | program mode 30, 103                                        |
| K                                       | n                                                           |
| keyswitch 48                            | R                                                           |
| no position 10                          | relay contacts                                              |
|                                         | normally closed 22                                          |
|                                         | normally open 22                                            |

| Relay indicator 51                            | spectrum/waveform parameters 65         |
|-----------------------------------------------|-----------------------------------------|
| Relay Object 161                              | FMAX 65                                 |
| relay parameters 78                           | Number of Averages 66                   |
| Activation Delay 79                           | Number of Lines 65                      |
| Activation Logic 79                           | Number of Points 66                     |
| Alarm A 80                                    | Period 66                               |
| Alarm B 80                                    | Window Type 66                          |
| Alarm Identifier A 80                         | Speed Measurement Object 170            |
| Alarm Identifier B 80                         | speed measurement parameters 69         |
| Alarm Levels 80                               | Exponential Averaging Time Constant 69  |
| Alarm Status to Activate On (Alarm Levels) 80 | SU/CD trend parameters 85               |
| Enable 79                                     | Enable SU/CD Trend 86                   |
| Failsafe 81                                   | Latch Enable 86                         |
| Latching 79                                   | Maximum Speed 87                        |
| Name 79                                       | Maximum Trend Span 87                   |
| Number 78                                     | Minimum Speed 87                        |
| Relay Installed 80                            | Number of Records 86                    |
| relays                                        | Record Interval 86                      |
| resetting 42, 52                              | Reset Trigger 87                        |
| wiring 22                                     | Select Measurements 86                  |
| remote relay reset signal, wiring 42          | Status 87                               |
| reset switch 52                               | View Trend Data 87                      |
| run mode 50, 103                              | sum harmonics measurement parameters 64 |
| ,                                             | Order of Sum Harmonics 64               |
| c                                             | Sum Harmonics Start Order 64            |
| \$                                            | switch input grounding requirements 13  |
| self-test, status 52                          | 1 3 3 1                                 |
| serial port connection                        | <b>T</b>                                |
| mini-connector 46                             | <b>I</b>                                |
| terminal base unit 45                         | Tachometer Channel Object 171           |
| setpoint multiplication switch, wiring 43     | tachometer parameters 71                |
| Setpoint Multiplier indicator 51              | Auto Trigger 73                         |
| signal processing parameters 60               | DC Bias Time Constant 72                |
| Autoscale 60                                  | Fault High 72                           |
| Channel Name 58                               | Fault Low 72                            |
| External Gear Teeth 62                        | Fault Time-Out 73                       |
| Full Scale 60                                 | Pulses Per Revolution 72                |
| High HPF Frequency 61                         | Tachometer Name 71                      |
| High Pass Filter 61                           | Trigger Hysteresis 73                   |
| Internal Gear Teeth 62                        | Trigger Mode 73                         |
| Low HPF Frequency 61                          | Trigger Slope 73                        |
| Medium HPF Frequency 61                       | Trigger Threshold 73                    |
| Output Data Unit 61                           | Tachometer Status indicator 51          |
| Sampling Mode 62                              | tachometer, wiring 25                   |
| Very High HPF Frequency 61                    | terminal base                           |
| Very Low HPF Frequency 61                     | interconnecting units 15                |
| specifications 95                             | mounting on DIN rail 13                 |
| Spectrum Waveform Measurement Object 163      | mounting on panel/wall 16               |

| terminal block assignment 18              | W                                       |
|-------------------------------------------|-----------------------------------------|
| transducer grounding requirements 12      | wiring                                  |
| Transducer Object 173                     | to separate power connections 6         |
| transducer wiring 29, 182                 | to terminal base 17                     |
| IEPE accelerometer 29, 182                | wiring connections                      |
| non-contact sensor 31, 183                | 4-20mA outputs 44                       |
| other configurations 37, 39, 40, 186, 188 | buffered outputs 27                     |
| passive transducer 32                     | DeviceNet 46                            |
| powered sensor 34, 185                    | power supply 21                         |
| process DC voltage signal 36              | relays 22                               |
| transition to program mode, DeviceNet 104 | remote relay reset signal 42            |
| transition to run mode, DeviceNet 104     | serial port 45                          |
| triggered trend parameters 83             | setpoint multiplication switch 43       |
| Enable Triggered Trend Measurements 84    | tachometer 25                           |
| Latch Enable 84                           | transducers 29, 182                     |
| Manual Trigger 85                         | wiring requirements 6                   |
| Number of Records 84                      |                                         |
| Post Trigger 85                           | X                                       |
| Record Interval 84                        |                                         |
| Relay Number 84                           | XM Services 105                         |
| Reset Trigger 85                          | XM status values 114                    |
| Select Measurements 84                    | XM-122 gSE Vibration Module             |
| Status 85                                 | components 2                            |
| Store Spectrum 85                         | configuration parameters 55             |
| Store Waveform 85                         | grounding requirements 8                |
| Trend Span 85                             | indicators 49                           |
| View Collected Data 85                    | introduction 1                          |
| View Trend Data 85                        | measurement modes 56                    |
|                                           | mounting 48                             |
| V                                         | power requirements 6                    |
| Vector Measurement Object 174             | reset switch 52                         |
| vector measurements 90                    | self-test 52                            |
|                                           | specifications 95                       |
|                                           | wiring requirements 6                   |
|                                           | XM-122 I/O message formats 107          |
|                                           | XM-441 Expansion Relay Module 3, 53, 78 |
|                                           | XM-940 terminal base                    |
|                                           | description 2                           |
|                                           | mounting 13                             |
|                                           | wiring 17                               |

# Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At <a href="http://support.rockwellautomation.com">http://support.rockwellautomation.com</a>, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit <a href="http://support.rockwellautomation.com">http://support.rockwellautomation.com</a>.

#### **Installation Assistance**

If you experience a problem within the first 24 hours of installation, please review the information that's contained in this manual. You can also contact a special Customer Support number for initial help in getting your product up and running.

| 1.440.646.3434<br>Monday — Friday, 8am — 5pm EST                                               |
|------------------------------------------------------------------------------------------------|
| Please contact your local Rockwell Automation representative for any technical support issues. |

#### **New Product Satisfaction Return**

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

|                          | Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor in order to complete the return process. |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outside United<br>States | Please contact your local Rockwell Automation representative for the return procedure.                                                                                             |

#### www.rockwellautomation.com

#### Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640

Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846