1794 FLEX I/O Very High Speed Counter Module

Catalog Numbers 1794-VHSC

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.
Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous

environment, which may lead to personal injury or death, property damage, or economic loss. | ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, |
| :--- |
| property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the |
| consequence |

This manual contains new and updated information. Changes throughout this revision are marked by change bars, as shown to the right of this paragraph.

New and Updated Information

This table contains the major changes and additions made to this revision.

Topic	Page
Updated Frequency Resolution/Enhancement section.	$\underline{33}$
Updated Word 8 Bit/Word Definitions.	$\underline{39,40}$

Notes:

Read this preface to familiarize yourself with the rest of the manual. It provides information concerning:

- who should use this manual
- the purpose of this manual
- related documentation

Who Should Use this Manual

Purpose of this Manual

You must be able to program and operate an Allen-Bradley programmable controller (PLC) to make efficient use of this module.

We assume that you know how to do this in this manual. If you do not, refer to the appropriate programming and operations manual for the associated programmable controller before you attempt to use this module.

This manual shows you how to use the FLEX I/O Very High Speed Counter module with an Allen-Bradley programmable controller. It helps you install, program, and troubleshoot your module.

For Information About	See Page
Overview of the Very High Speed Counter Module	$\underline{1}$
Instal Your FLEX I/O VHSC Module	$\underline{17}$
Programming Your Very High Speed Counter Module	$\underline{55}$
Communicate With Your Module	$\underline{29}$
Interpret Status Indicators for your FLEX I/O Module	$\underline{47}$
Specifications	$\underline{49}$

Additional Resources

These documents contain additional information concerning related Rockwell Automation products.

Resource	Description
FLEX I/O Selection Guide, publication 1794-SG002	A description and overview of the 1794 series FLEX I/O, FLEX I/O XT and FLEX Ex modules and compatible control platforms.
Very High Speed Counter Module Installation Instructions, publication 1794-IN067	Information on installing the FLEX I/O Very High Speed Counter Module.
ControlLogix System User Manual, publiation 1756-UM001	Detailed information on how to install, configure and troubleshoot the ControlLogix module in your ControlLogix application.
EtherNet/IP Modules Installation Instructions, publication ENET-IN002	Information on installing EtherNet/IP bridge modules.
FLEX I/O DC Power Supply Installation Instructions, publication 1794-IN069	Information on how to install the FLEX I/O DC Power Supply Catalog No. 1794-PS13, 1794-PS3.
EtherNet/IP Modules in Logix5000 Control Systems User Manual, publication ENET-UM001	Detailed information on how to use EtherNet/IP modules with Logix5000 controllers and communicate with various devices on the Ethernet network.

Resource	Description
Industrial Automation Wiring and Grounding Guidelines, publication 1770-IN041	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, http://ab.com	Provides declarations of conformity, certificates, and other certification details.
Application Considerations for Solid-State Controls, publication SGl-1.1	A description of important differences between solid-state programmable controller products and hard-wired electromechanical devices.
Allen-Bradley Industrial Automation Glossary, publication AG-7.1	A glossary of industrial automation terms and abbreviations.

You can view or download publications at
http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.

Common Techniques Used in this Manual

The following conventions are used throughout this manual:

- Bulleted lists such as this one provide information, not procedural steps.
- Numbered lists provide sequential steps or hierarchical information.
- Italic type is used for emphasis.
Summary of Changes New and Updated Information iii
Who Should Use this Manual v
Purpose of this Manual V
Additional Resources v
Common Techniques Used in this Manual vi
Chapter 1
Overview of the Very High Speed Counter Module
Overview 1
Module Description 1
Module Features 1
Encoder or Counter Mode 2
Counter Mode 3
Encoder Mode 4
Direction of Count 5
Preset Value 6
Rollover Value. 6
Software Reset. 6
Gate/Reset Input 6
Period/Rate Mode 8
Operation of Scaler 10
Connection to Counter Inputs. 10
Continuous/Rate Mode 10
Rate Measurement Mode 11
Sample Period 12
Connection to Counter Inputs. 12
Pulse Width Modulation. 12
Outputs 13
Enabling and Forcing Outputs 13
Assigning Outputs to Counter Windows 13
Operation of Outputs 13
Isolation of Outputs 14
Connecting Outputs to Counters 14
What the Module Does 14
Chapter Summary 15
Chapter 2
Install Your FLEX I/O VHSC
ModuleOverview17
Before You Install Your Module 17
Power Requirements 17
Install the Module 17
Mount on a DIN Rail 18
Install the Terminal Base Unit 18
Mount on a Panel or Wall 20
Mount the 1794-VHSC Module on the Terminal Base Unit 21
Wiring Information 23
Connect Wiring to the FLEX I/O VHSC Input Module 24
Connect Wiring Using a 1794-TB3G, 1794-TB3GK or 1794-TB3GSTerminal Base Unit24
Chapter Summary 28
Chapter 3
Communicate With Your
ModuleOverview29
Communication Over the
I/O Backplane 29
Scheduled Data-Transfer 30
Unscheduled Data-Transfer 30
Module I/O Mapping 30
Application of New Configurations 30
I/O Structure 31
Adapter Input Status Word 31
Safe State Data 32
Device Actions 32
Communication Fault Behavior 33
Idle State Behavior 33
Input Data Behavior upon Module Removal 33
Frequency/Resolution Enhancement 33
Chapter Summary 45
Chapter 4
Interpret Status Indicators for your FLEX I/O Module
Overview 47
Status Indicators 47
Diagnostic Codes Returned by the Module 48
Chapter Summary 49
Appendix A
SpecificationsOverview51
Programming Your Very High Appendix B
Speed Counter Module 55
Index 57

Overview of the Very High Speed Counter Module

Overview

This chapter gives you information on features of the modules, how the module communicates with controllers and how the module operates.

Topic	Page
Module Description	$\underline{1}$
Encoder or Counter Mode	$\underline{2}$
Period/Rate Mode	$\underline{8}$
Continuous/Rate Mode	$\underline{10}$
Rate Measurement Mode	$\underline{11}$
Pulse Width Modulation	$\underline{12}$
Outputs	$\underline{13}$
What the Module Does	$\underline{14}$

Module Description

The 1794-VHSC module performs high speed counting for industrial applications. The module is an intelligent I/O module that interfaces signals with any Allen-Bradley programmable controller that has Ethernet capability.

The 1794-VHSC module, once configured for its intended purpose, can continue to operate without FlexBus power.

IMPORTANT Customer power is required for the module, inputs and outputs.

After scanning the inputs and updating the outputs, the input data is converted to a specified data type in a digital format to be transferred to the processor's data table on request. Command and configuration data is sent from the programmable controller data tables to the module via Ethernet.

Module Features

The $1794-V H S C$ module counts pulses from encoders (such as Allen-Bradley Bulletin 845), pulse generators or mechanical limit switches, or proximity switches, and returns either a count or frequency in binary format.

The module features include:

- 2 counters configurable for 3 encoder modes, counter mode, period/rate mode, continuous/rate mode, rate measurement and pulse width modulation (PWM)
- 4 outputs, isolated in pairs
- outputs are current-sourcing at 5 or $12 \ldots 24 \mathrm{~V}$ DC $(0.5 \mathrm{~mA} \max @ 5 \mathrm{~V} ; 1 \mathrm{~A}$ $\max @ 12 . .24 \mathrm{~V}$)
- single-ended or differential inputs
- 2-phase encoder inputs up to a frequency of 250 KHz (X 4 mode)
- single-phase counter inputs up to a frequency of 1 MHz
- input voltage range of 5 or 24 V DC
- returns input as count or frequency in binary format
- input counts as high as $16,777,215$
- up to 1 MHz in period/rate or rate measurement frequency modes
- outputs can be tied to any or all counter windows
- each output has a user-selectable on-off value
- outputs can be tied back to an input for cascading
- each counter has a user-selectable preset and rollover value
- totalization is provided in period/rate, continuous/rate and rate measurement modes
- module can continue counting without flexbus power (after configuration)
- outputs have safe state values which can be applied when there is a network failure or the PLC is switched to PROGRAM mode
- pulse width modulation (PWM) mode is available

The 1794-VHSC module operates in the following modes:

- counter mode
- encoder X1 mode
- encoder X2 mode
- encoder X4 mode
- period/rate mode
- continuous/rate mode
- rate measurement frequency mode
- pulse width modulation (PWM)

The operation of encoder and counter modes is virtually identical. The only difference between the two modes is in the type of feedback used.

Use the counter mode if you need the module to read incoming pulses from a maximum of 2 encoders (single-ended or differential), counters, pulse generators, mechanical limit switches, etc. and return them to the programmable controller as a binary number ($0 \ldots . .16,777,215$).

Use the encoder modes if you need the module to read incoming quadrature pulses and return them to the programmable controller as a binary number ($0 . . .16,777,215$). In these modes, the module accepts two-phase quadrature feedback and counts up or down depending upon the condition of the phase B input for each counter.

The operation of the module in the encoder/counter modes is as follows:

- counter mode - channel B is direction control (up or down). Channel A input is used for pulse. The count is bidirectional with the direction determined by channel B.
- encoder X1 - This is a bidirectional count mode; counting up or down, using quadrature input signals.
- encoder X2 - This is a bidirectional count mode, using quadrature input signals, with 2 times the resolution of X1.
- encoder X4 - This is a bidirectional count mode, using quadrature input signals, with 4 times the resolution of X1.

Each of the counters in encoder/counter mode has values associated with it. These are:

- preset value
- rollover value

Counter Mode

The counter mode allows the module to read incoming pulses and return them to the programmable controller processor as a binary number ($0 . . .16,777,215$).

In the counter mode, direction (up counting or down counting) is determined by the phase B input, which can be a random signal. If Phase B is high, the counter will count down. If phase B is low or floating, (that is, not connected), the counter counts up.

Counter Mode Direction

Phase B Input	Count direction
High	Down
Low or floating (not included)	Up

The module reads incoming pulses from a maximum of 2 encoders (single-ended or differential), counters, pulse generators, mechanical limit switches, and so forth and returns a count to the programmable controller processor in a binary number ($0-16,777,215$).

The counter mode accepts only one phase feedback. This relationship is shown in Figure Block Diagram of Counter Mode on page 4.

Block Diagram of Counter Mode

Encoder Mode

The encoder mode allows the module to read incoming pulses and return them to the programmable controller processor as a binary number ($0-16,777,215$).

In this mode, the module will accept two phase quadrature feedback. The module senses the relationship between the 2 phases and counts up or down accordingly.

Encoder X1 mode - quadrature input signals count on the leading edge or the trailing edge of channel A for a bidirectional count. The phase relationship between Channel A and Channel B determines direction - channel A leading, and channel B floating, the count direction is up; Channel A lagging, and Channel B high, the count direction is down.

Encoder X2 mode - quadrature input signals count on the leading edge and the trailing edge of channel A for a bidirectional count. Channel B determines direction - B low (floating), the count direction is up; B high, the count direction is down.

Encoder X4 mode - quadrature input signals count on the leading edge and the trailing edge of channel A and channel B for a bidirectional count. Channel B determines direction - B low (floating), the count direction is up; B high, the count direction is down.

Direction of Count

The module can count either up or down, depending upon the condition of the B input for each counter. In encoder applications, the counter will increment on the leading edge of input A , while input B determines the direction of the count.

You also have the option of X1, X2 and X4 multiplying of the input pulses. See Figure Phase Relationship for Forward or Reverse Directions on page 5 for the relationships between inputs A and B for forward and reverse directions in encoder applications.

Phase Relationship for Forward or Reverse Directions

The following paragraphs apply to both encoders and counters.

Preset Value

Each of the 2 counters has one preset value associated with it. In the encoder or counter modes, the preset value represents a reference point (or count) from which the module begins counting. The module can count either up or down from the preset value. Preset values are loaded into the count registers through the preset count bits. Preset values can range from 0 to $16,777,215$ binary.

Rollover Value

Each of the 2 counters has one rollover value associated with it. When the rollover value is reached by the encoder/counter, it resets to 0 and begins counting again. The rollover values range from 1 to $16,777,216$ binary. The rollover value is circular. For example: if you program 360, the count will be from $358,359,0,1$, and so on, in a positive direction and from $1,0,359,358$, and so on, in a negative direction.

Software Reset

The counters can also be reset by the Reset Count bits found in Word 0 , bits 0 and 4 of the Counter Control word. When one of these bits is set to 1 , the associated counter is reset to zero and begins counting. The module can also be reset with the gate/reset as explained below. For more details,

Gate/Reset Input

There is one gate/reset input for each of the 2 counters. The gate/reset input, when active, will function in one of the 4 store count modes outlined below.

Scaling Input Count at the Gate/Reset Terminal

You can scale the incoming count at the gate/reset terminal. Scaling allows the incoming pulses at gate/reset to be divided by a number in the range of $1,2,4,8$, $16,32,64$ and 128.

Store Count

The store count feature allows the module to store the current count value of the associated counter. The store count feature is triggered by the state of the gate/ reset terminal on the module. The stored count of each counter is placed in a separate word in the Read Data file. The stored count value will remain in the Read Data file until a new trigger pulse is received at the Gate/Reset terminal. When a new trigger pulse is received, the old count value will be overwritten by the new value.

In mode 1, store/continue (see Figure Store/Continue on page 7), the leading edge of a pulse input on input Z (gate/reset) terminal causes the current value in
the counter to be read and stored. The counter will continue counting. The stored count will be available in the Read Data file. The stored count information will remain in the block transfer read file until it is overwritten by new data.

Store/Continue

In mode 2, store/wait/resume (see Figure Store/Wait/Resume on page 7), a rising edge of a pulse input on the Z input (gate/reset) terminal reads and stores the current counter value in the Read Data file, and inhibits counting while the gate/ reset input is high. Counting resumes when the input goes low.

Mode 2 does not reset the counter, although it does store the count value. The stored count is available in the Read Data file. The stored count remains in the Read Data file until it is overwritten with new data.

Store/Wait/Resume

In mode 3, store-reset/wait/start (see Figure Store-Reset/Wait/Start on page 7), the rising edge of the pulse on input Z (gate/reset) terminal causes the counter to stop counting, store the current count value in the Read Data file and reset the count to zero. The counter does not count while the Z input on the gate/reset terminal remains high. Counting resumes from zero on the falling edge of the pulse at the Z (gate/reset) terminal. The stored count is available in the Read Data file. The stored count remains in the Read Data file until it is overwritten with new data.

Store-Reset/Wait/Start

In mode 4, store-reset/start (see Figure Store-Reset/Start on page 8), on the rising edge of a pulse input at the Z (gate/reset) terminal causes the counter to store the accumulated count value in the Read Data file, and reset the counter to zero. The counter continues counting while the Z gate/reset input is high. The stored count
is available in the Read Data file. The stored count remains in the Read Data file until it is overwritten with new data.

Store-Reset/Start

The figures show the store count feature operating on the rising edge of the gate/ reset pulse. The user has the option of electing these same features using the falling edge of the gate/reset pulse. The gate invert bit is active in the store count, continuous/rate and period/rate modes.

Period/Rate Mode

Use the period/rate mode to determine the frequency of input pulses by counting the number of internal 5 MHz clock pulses over a user-specified number of input signal pulses. At the end of the specified number of pulses, the module returns the frequency and the total number of pulses received.

A channel configured for period/rate mode acts as a period rate counter. An internal 5 MHz clock is used as a frequency reference. This clock is gated by the incoming pulse train at the gate/reset input. The results of this gating action are the number of pulses or a frequency. The frequency is returned in input file words 0 (LSW) and 1 (MSW) for channel 0 and word 2 (LSW) and 3 (MSW) for channel 1 . The total pulses received is stored in input file words 4 (LSW) and 5 (MSW) for channel 0 and words 6 (LSW) and 7 (MSW) for channel 1. Select the period/rate mode by setting the appropriate bits in word 0 of the configuration block.

1794-VHSC modules count the total number of pulses occurring at the Z (gate/ reset) pin. This function is frequency-limited to 200 Hz X the scaler value. You can reset this count by setting the VR bit.

Figure Period/Rate Mode on page 9 shows a diagram of the module used in the period/rate mode.

Period/Rate Mode

In Figure Period/Rate Mode on page 9, the incoming pulse train from the gate/ reset terminal is used to sample pulses from the 5 MHz internal clock. As the frequency of the incoming pulse train at the gate/reset terminal increases, the number of sampled pulses from the 5 MHz clock decreases. This relationship is shown in NO TAG. Since accuracy is related to the number of pulses received over the sample period, the accuracy will decrease with increasing input frequencies at the Gate/Reset terminal.

To some extent, the decrease in accuracy can be lessened by scaling the input frequency through the use of a scaler. A scaler value of 1 will only return an accurate input frequency if incoming pulses have a 50% duty cycle.

Relationship Between Sampled Pulses and Input Frequency

Input Frequency at Z (Gate/Reset) Terminal in Hz	Sampled Pulses for 1/2 Cycle of Z (Gate/Reset) Pulse
2	1.25 M
5	500 K
10	250 K
20	125 K
50	50 K
100	25 K

Relationship Between Sampled Pulses and Input Frequency

Input Frequency at Z (Gate/Reset) Terminal in $\mathbf{~ H z}$	Sampled Pulses for 1/2 Cycle of Z (Gate/Reset) Pulse
200	12.5 K
500	5 K
1 KHz	2.5 K
2 KHz	1.25 k
5 KHz	500
10 KHz	250
20 KHz	125
50 KHz	50
100 KHz	25

Operation of Scaler
In period/rate mode, the scaler lets the incoming pulse train at the Z (gate/reset) terminal be divided by a user defined number. Acceptable values for the scaler are $1,2,4,8,16,32,64$ and 128 . There is one scaler value for each counter.

\triangle
ATTENTION: Sample period times scaler must be less than 6.71 s in order to avoid a zero frequency detect indication.

Connection to Counter Inputs

The only input to the module in the period/rate mode is made to the Z (gate/ reset) terminal. The counter inputs (channel A and B) are not used in the period/ rate mode.

Continuous/Rate Mode

The continuous/rate mode is similar to the period/rate mode previously described except the outputs in this mode are dynamic outputs. Use this mode to determine the frequency of input pulses by counting the number of internal 5 MHz clock pulses over a user-specified number of input signal pulses. Each output is turned on as soon as the turn-on count is reached, and turned off as soon as the turn-off count is reached. As the internal 5 MHz clock is counted, the outputs dynamically track the 5 MHz count. This allows you to turn an output on a certain number of 5 MHz counts after the gate/reset pin goes active, and turn it off a certain number of 5 MHz counts later.

1794-VHSC module counts the total number of pulses occurring at the Z (gate/ reset) terminal. This function is frequency-limited to 200 Hz X the scaler value. This total count is returned in input file words 4 (LSW) and 5 (MSW) for channel 0 and 6 (LSW) and 7 (MSW) for channel 1 . You can reset this count by setting the VR bit.

Period/Rate and Continuous/Rate Output Operation with Scaler of 1

Assumes symmetrical pulse, 50\% duty cycle, so period = sample time on X 2 (on and off) Frequency $=1 /$ period If count $=25$, scaler $=1$, and clock period $=(1 / 5 \mathrm{MHz})$
Frequency $=1 /[(25 / 1) \times(1 / 5 \mathrm{MHz}) \times 2]=100 \mathrm{KHz}$

Use the rate measurement mode to count incoming pulses for a user-specified time interval. At the end of the interval, the module returns a value representing the sampled number of pulses and a value indicating the incoming frequency. When the count and frequency are updated, any associated outputs are checked against their associated presets.

The value representing the total number of pulses is returned in input file words 4 (LSW) and 5 (MSW) for channel 0 and 6 (LSW) and 7 (MSW) for channel 1, and the value indicating the incoming frequency is returned in words 0 (LSW) and 1 (MSW) and 2 (LSW) and 3 (MSW). The total count equals the running sum of the number of pulses received during the sample period. The operation of rate measurement mode is shown in Figure Operation of the Rate Measurement Mode on page 12.

Operation of the Rate Measurement Mode

If sample period is 50 ms , and count $=3$, then frequency $=3 / 50 \mathrm{~ms}=60 \mathrm{~Hz}$

EXAMPLE In , three counts have been accumulated during the user-selected time period. If you had selected 50 ms as the sample period, the frequency returned to the programmable controller processor would be: Frequency = Counts/Sample period $=3$ counts $/ 50 \mathrm{~ms}=60 \mathrm{~Hz}$

Sample Period

You can set the sample period used in the frequency calculation in the rate measurement mode. Allowable values are 10 ms to 3 s in 10 ms increments. The default value is 1 s .

Connection to Counter Inputs

The only user connections used in the rate measurement mode are to phase A of the module. The Z (gate/reset) and channel B terminals are not used in this mode.

The module can generate a pulse width modulation signal that may be tied to any output. By specifying a period (configuration word 2) and gate interval (configuration word 2 or 3) together with the PWM configuration word 2 or 3, a counter and its first ON/OFF window comparator is assigned and the signal generated. The actual duty cycle is specified by output words 2 and 3 .

Outputs

The 1794-VHSC module has 4 outputs, isolated in groups of 2. Each of the outputs is capable of sourcing current and will operate between 5 and 24 V DC. You must connect an external power supply to each of the outputs. The outputs can source 1 A DC alone or in combination. The outputs are hardware-driven and will turn on in about 25 s when the appropriate count value has been reached.

Enabling and Forcing Outputs

Outputs may be forced on or off independent of count or frequency value. To force the outputs, they must first be enabled. Enabling the outputs is done through a data table word 1, bits 1, 5, 9 and 13 (see Figure 1794-VHSC - High Speed Counter Module Image Table Mapping on page 35). Once the outputs have been enabled, they may be forced on by setting bits $0,4,8$ or 12 in word 1 . The outputs can be forced off by setting the enable bit to 0 .

Assigning Outputs to Counter Windows

By setting bits in the configuration block, you can assign the outputs on the module to any of the various counter windows. You can assign any output to any count window with no restrictions.

Operation of Outputs

When the outputs for the 1794 -VHSC module are enabled and assigned to a counter window they operate in an ON-OFF fashion. For example, assume that the module were programmed to turn ON an output when a count value of 2000 was reached. Further, assume that the user desired to have the output remain energized for a period of 3000 counts and then turn OFF. The end result would be that the outputs would turn ON at count of 2000 , would remain energized for 3000 additional counts, and would turn OFF at 5000 counts. The ON and OFF values are circular around zero (see Figure On-Off Operation of Output on page 13).

On-Off Operation of Output

Using output 0 as an example, when the value in Counter ON Value is less than the value in Counter OFF Value, the output turns on at 2000 and off at 5000 . If the value in Counter ON Value is greater than the value in Counter OFF Value, the output turns off at 2000 and on at 5000 (see Figure Effect of Values in On/ Off Operation on page 14).

Effect of Values in On/Off Operation

Output remains energized for
3000 additional counts

Output turns on at count value of 2000	Output turns off at count value of 5000	Output turns off at count value of 2000

When values in Counter On Value are less than values in Counter Off Value.

When values in Counter On Value are greater than values in Counter Off Value.

Isolation of Outputs

The module provides 850 V DC isolation between each of the outputs and the FlexBus.

Connecting Outputs to Counters

You can connect any of the outputs to any of the counter inputs. In this way, it is possible to use the outputs to reset a counter or to cascade counters. If using the outputs this way, make certain that the output voltage is compatible with the chosen input.

What the Module Does

The very high speed counter module performs high-speed scaling calculation operations for various industrial applications. The module interfaces with a FLEX I/O family EtherNet/IP adapter which then communicates with a programmable controller processor.

The adapter/power supply transfers data to and from the module over the FlexBus. Instructions in the programmable controller facilitate this communication and let you write output values and configure the module's mode of operation. Figure FLEX I/O Communication Process on page 15 describes the communication process.

FLEX I/O Communication Process

1. The adapter transfers your configuration data and commands to the module.
2. External devices generate input signals that are transmitted to the module.
3. The module converts these signals into binary format, and stores these values and controls their output until the adapter requests their transfer.
4. The adapter transfers the data over the FlexBus.
5. The adapter and module determine that the transfer was made without error and inputs values are within a specified range.
6. EtherNet/IP transfers the data to the programmable controller data table.

Chapter Summary

In this chapter you learned how your module operates, and how your module communicates with the programmable controller.

Notes:

Install Your FLEX I/O VHSC Module

Overview

Before You Install Your Module

This chapter describes how to physically install the 1794-VHSC adapter on the DIN rail and connect it to the EtherNet/IP network.

Topic	Page
Before You Install Your Module	$\underline{17}$
Power Requirements	$\underline{17}$
Install the Module	$\underline{18}$
Mount on a DIN Rail	$\underline{18}$
Mount on a Panel or Wall	$\underline{20}$
Mount the 1794-VHSC Module on the Terminal Base	$\underline{21}$
Unit	$\underline{23}$
Wiring Information	$\underline{24}$
Connect Wiring to the FLEX I/O VHSC Input Module	
Connect Wiring Using a 1794-TB3G, 1794-TB3GK or	$\underline{24}$
$1794-T B 3 G S$ Terminal Base Unit	

Before installing your 1794-VHSC very high speed counter module, you need to:

- Calculate the power requirements of all modules in the FLEX I/O system, and,
- Position the keyswitch on the terminal base.

Power Requirements

The wiring of the terminal base unit is determined by the current draw through the terminal base. Make certain that the current draw does not exceed 10 A .

Methods of wiring the terminal base units are shown in Wiring Information on page 23 .

Installation of the module consists of:

- mount the terminal base unit
- install the 1794 -VHSC module into the terminal base unit
- install the connecting wiring into the terminal base unit

If you are installing your module into a terminal base unit that is already installed, proceed to See Mount on a DIN Rail on page 18.

Mount on a DIN Rail

\triangle
ATTENTION: Do not remove or replace a terminal base unit when power is applied. Interruption of the FlexBus can result in unintended operation or machine motion.

Install the Terminal Base Unit

1. Remove the cover plug in the male connector of the unit to which you are connecting this terminal base unit.
2. Check to make sure that the 16 pins in the male connector on the adjacent device are straight and in line so that the mating female connector on this terminal base unit will mate correctly.

Make certain that the female FlexBus connector is fully retracted into the base unit.
3. Position the terminal base at a slight angle and hooked over the top of the $35 \times 7.5 \mathrm{~mm}$ DIN rail A (Allen Bradley part number 199-DR1; 46277-3).

45320
4. Slide the terminal base over tight against the adapter, or proceeding terminal base. Make sure the hook on the terminal base slides under the edge of the adapter, or proceeding terminal base, and the FlexBus connector is fully retracted.
5. Pivot the terminal base onto the DIN rail with the top of the rail hooked under the lip on the rear of the terminal base. Use caution to make sure that the female FlexBus connector does not strike any of the pins in the mating male connector.
6. Press down on the terminal base unit to lock the terminal base on the DIN rail. If the terminal base does not lock into place, use a screwdriver or similar device to open the locking tab, press down on the terminal base until flush with the DIN rail and release the locking tab to lock the base in place.

45321
Gently push the FlexBus connector into the side of the adapter, or proceeding terminal base to complete the backplane connection.

For specific wiring information, refer to the installation instructions for the module you are installing in this terminal base unit.
7. Repeat the above steps to install the next terminal base unit.

Ensure that the cover of the FlexBus connector on the last terminal base unit is in place.

Mount on a Panel or Wall

Installation of a FLEX I/O system on a wall or panel consists of:

- laying out the drilling points on the wall or panel.
- drilling the pilot holes for the mounting screws.
- mounting the adapter mounting plate.
- installing the terminal base units and securing them to the wall or panel.

Use the mounting kit Cat. No. 1794-NM1 for panel or wall mounting.

1794-NM1 Mounting Kit

To install the mounting plate on a wall or panel:
Lay out the required points on the wall or panel as shown in the Figure Drilling Dimensions for Panel or Wall Mounting on page 21.

Drilling Dimensions for Panel or Wall Mounting

8. Drill the necessary holes for the \#6 self-tapping mounting screws.
9. Mount the mounting plate for the adapter module using two \#6 selftapping screws - 18 screws are included for mounting up to 8 modules and the adapter.

IMPORTANT Make certain that the mounting plate is properly grounded to the panel. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-IN041.
10. Hold the adapter at a slight angle and engage the top of the mounting plate in the indention on the rear of the adapter module.
11. Press the adapter down flush with the panel until the locking lever locks.
12. Position the terminal base unit up against the adapter and push the female bus connector into the adapter.
13. Secure to the wall with two \#6 self-tapping screws.
14. Repeat for each remaining terminal base unit.

Mount the 1794-VHSC Module on the Terminal Base Unit

The 1794-VHSC module mounts on a $1794-\mathrm{TB} 3 \mathrm{G}$ or $1794-\mathrm{TB} 3 \mathrm{GS}$ terminal base unit.

1. Rotate keyswitch (3) on terminal base unit (4) clockwise to position 1 as required for the module.
Do not change the position of the keyswitch after wiring the terminal base unit.

FLEX I/O Terminal Base and Very High Speed Counter Parts

2. Make certain the FlexBus connector (1) is pushed all the way to the left to connect with the neighboring terminal base or adapter.
You cannot install the module unless the connector is fully extended.
3. Make sure the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base unit.
ATTENTION: If you remove or insert the module while the
backplane power is on, an electrical arc can occur. This could
cause an explosion in hazardous location installations. Be sure that
power is removed or the area is nonhazardous before proceeding.
4. Position the module (8) with its alignment bar (7) aligned with the groove (6) on the terminal base.
5. Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism is locked into the module.
6. Remove cap plug and attach another terminal base unit to the right of this terminal base unit if required.
Make sure the last terminal base has the cap plug in place.

IMPORTANT The adapter is capable of addressing eight modules. Do not exceed a maximum of eight terminal base units in your system.

Wiring Information
This section provides essential wiring information for the 1794-TB3G, 1794TB3GK, and 1794-TB3GS terminal base units. It also includes instructions for connecting wiring to the FLEX I/O module.

Wire the Terminal Base Units (1794-TB3G shown)

ATTENTION: Take note of the following considerations when wiring your terminal base units:

- All modules must be frequency or analog modules for the daisychain configuration.
- Use the individual type of configuration for any "noisy" DC digital I/O modules in your system.
- All modules powered by the same power supply must be frequency or analog modules for the combination type of configuration.

Wiring the FLEX I/O VHSC Input module is done using the 1794-TB3G, 1794-TB3GK or the 1794-TB3GS terminal base unit.

1794-TB3G, 1794-TB3GK and 1794-TB3GS Wiring Connections

Connect Wiring to the FLEX I/O VHSC Input Module

Wiring to the $1794-V H S C$ Input module is made through the terminal base unit on which the module mounts.

The module is compatible with the 1794-TB3G, 1794-TB3GK and 1794TB3GS terminal base units.

Connect Wiring Using a 1794-TB3G, 1794-TB3GK or 1794-TB3GS Terminal Base Unit

1. Connect the individual signal wiring to numbered terminals on the $0 . . .15$ row (A) for 24 V inputs (terminals $0 . .5$ and $8 \ldots 13$) and $17 \ldots 32$ row (\mathbf{B}) for 5 V inputs (terminals $17 \ldots 22$ and $25 \ldots 30$) on the terminal base unit. Connect the input devices as shown in Table Wiring connections for the 1794-VHSC High Speed Counter Module on page 26.

ATTENTION: Do not connect 24 V signals to the 5 V input terminals. Permanent damage to the module will result.
2. Connect individual output wiring to terminals 6,7 and 14,15 on the $0 \ldots 15$ row (A) and terminals 23,24 and 31,32 on the $16 \ldots 32$ row (B) on the terminal base unit. Connect output return wiring for channels $0,1,2$, and 3 to terminals 23,2431 and 32 respectively. Connect the output devices as shown in Table Wiring connections for the 1794-VHSC High Speed Counter Module on page 26
3. Terminate shields to terminals 16 or 33 on row B , or $40 \ldots 45$ on row C .
4. Connect 24 V DC to terminal 34 on the $34 \ldots 51$ row (C), and 24 V common to terminal 35 on the $34 \ldots . .51$ row (C).

ATTENTION: To reduce susceptibility to noise, power frequency modules and digital modules from separate power supplies. Do not exceed a length of $10 \mathrm{~m}(33 \mathrm{ft})$ for DC power cabling.
5. If daisychaining the 24 V DC power to the next 1794-TB3G, 1794TB3GK or 1794-TB3GS base unit, connect a jumper from terminal 50 (24V) on this base unit to terminal 34 and from terminal 51 (24V DC common) to terminal 35 on the next 1794-TB3G, 1794-TB3GK or 1794-TB3GS base unit.
6. Connect output power wiring to terminals $37(+)$ and $39(-)$ for outputs 0 and 1 , and terminals $46(+)$ and $48(-)$ for outputs 2 and 3.
ATTENTION: Use extreme care when connecting wiring to an
adjacent terminal base unit. Wiring for the 1794-TB3G and
1794-TB3GS terminal base units is different from other 1794 terminal
base units.

Connections for Terminal Base 1794-TB3G or 1794-TB3GK shown

Wiring connections for the 1794-VHSC High Speed Counter Module

Incremental Encoder Input	Terminal Base Units 1794-TB3G, 1794-TB3GK, 1794-TB3GS	
	Channel 0	Channel 1
+24V Inputs		
Input A	0	8
Input $\overline{\mathrm{A}}$	1	9
Input B	2	10
Input \bar{B}	3	11
Input Z	4	12
Input \bar{Z}	5	13
+5V Inputs		
	Channel 0	Channel 1
Input A	17	25
Input $\overline{\mathrm{A}}$	18	26
Input B	19	27

Wiring connections for the 1794-VHSC High Speed Counter Module

Input \bar{B}	20		28		
Input Z	21		29		
Input \bar{Z}	22		30		
Outputs					
Output	Sourcing Out	Return	Output	Sourcing Out	Return
00	6	23	01	7	24
02	14	31	03	15	32
$+24 \mathrm{~V} \text { DC }$ Base power	Terminals 34 and 50				
+24V DC COM	Terminals 35 and 51				
$+5 \mathrm{~V} \text { or }+24 \mathrm{~V}$ Output power	Terminals 37 and 46				
-V Output power	Terminals 39 and 48				
Chassis GND	Terminals 16, 33, and 40... 45				

ATTENTION: Total current draw through the terminal base unit is
limited to 10 A . eparate power connections to the terminal base unit
may be necessary.

Example of Quadrature Encoder Differential Wiring to a 1794-TB3G or 1794-TB3GK Terminal Base Unit

Chapter Summary
This chapter provided you with instructions on how to install the module in an existing programmable controller system and how to wire to a terminal base unit.

Communicate With Your Module

Overview

Read this chapter to familiarize yourself with configurable features on the 1794-VHSC Very High Speed Counter module

For Information About	See Page
Communication Over the I/O Backplane	$\underline{29}$
I/O Structure	$\underline{31}$
Safe State Data	$\underline{32}$
Device Actions	$\underline{32}$
1794-VHSC - High Speed Counter Module Image	$\underline{35}$
Table Mapping	$\underline{32}$
Input Status Word Bits	$\underline{37}$
Bit/Word Definitions	$\underline{42}$
Configuration Word Definition	

Communication Over the I/O Backplane

One 1794-AENT or 1794-AENTR EtherNet/IP adapter can interface up to eight terminal base units with installed FLEX I/O modules, forming a FLEX I/O system of up to eight slots. The adapter communicates to other network system components (typically one or more controllers or scanners, and/or programming terminals) over the EtherNet/IP network. The adapter communicates with its I/O modules over the backplane.

Data is exchanged scheduled when mapped, or unscheduled using EtherNet/ IP instructions.

Scheduled Data-Transfer

Scheduled data transfer:

- is continuous
- is asynchronous to the ladder-logic program scan
- occurs at the actual rate displayed in the Actual Packet Interval field on the programming software I/O mapping (monitor) screen

Unscheduled Data-Transfer

Unscheduled operations include:

- unscheduled non-discrete I/O data transfers - through I/O transfer instructions
- peer-to-peer messaging - through Message (MSG) instructions
- messaging from programming devices

Unscheduled messaging on an EtherNet/IP network is non-deterministic. Your application and your configuration - number of nodes, application program, NUT, amount of scheduled bandwidth used, and so on - determine how much time there is for unscheduled messaging.

Module I/O Mapping

The I/O map for the 1794-VHSC module is divided into read words and write words. Read words consist of input and status words, and write words consist of output and configuration words. The number of read words or write words can be 0 or more. The length of each I/O modules read words and write words vary in size depending on module complexity. Each I/O module will support at least 1 input word or 1 output word. Status and configuration are optional, depending on the module. The 1794 -VHSC module has 9 input words, no status words, 4 output words and 56 configuration words.

Application of New Configurations

When a configuration is sent to the $1794-$ VHSC module, it is checked for consistency before being applied. If an error is found in the configuration, the PE bit (input word 8, bit 15) is asserted and the module locally retains its previous configuration. To isolate any problems an improperly configured module may have, the user application program (ladder program, for instance) should monitor this error.

If the configuration is considered acceptable, the counter application specific integrated circuit (ASIC) is disabled - counting is suspended and outputs are shut off - while the ASIC is loaded with the new operational parameters.

Output data is received by the adapter in the order of the installed I/O modules. The Output data for Slot 0 is received first, followed by the Output data for Slot 1 , and so on up to slot 7 .

The first word of input data sent by the adapter is the Adapter Status Word. This is followed by the input data from each slot, in the order of the installed I/O modules. The Input data from Slot 0 is first after the status word, followed by Input data from Slot 2, and so on up to slot 7 .

Adapter Input Status Word

The input status word consists of:

- I/O module fault bits - 1 status bit for each slot
- node address changed - 1 bit
- I/O status - 1 bit

The adapter input status word bit descriptions are show in Table Input Status Word Bits on page 32 .

Input Status Word Bits

Bit Description	Bit	Explanation
I/O Module Fault	0	This bit is set (1) when an error is detected in slot position 0.
	1	This bit is set (1) when an error is detected in slot position 1.
	2	This bit is set (1) when an error is detected in slot position 2.
	3	This bit is set (1) when an error is detected in slot position 3.
	4	This bit is set (1) when an error is detected in slot position 4.
	5	This bit is set (1) when an error is detected in slot position 5.
	6	This bit is set (1) when an error is detected in slot position 6.
	7	This bit is set (1) when an error is detected in slot position 7.
Node address changed	8	This bit is set (1) when the node address switch setting is changed since power up.
$1 / 0$ state	9	Bit $=0$ - idle Bit $=1$ - run
	$10 \ldots 15$	Not used - set to 0.

Possible causes for an I/O module fault are:

- transmission errors on the FLEX I/O backplane
- a failed module
- a module removed from its terminal base
- an incorrect module inserted in a slot position
- an empty slot
- a non-discrete module in the slot

Safe State Data

Device Actions

The EtherNet/IP adapter does not provide storage for alternate module output data during communication faults or processor idle state. This safe state data is stored in the 1794-VHSC module and may be defined using configuration software. Safe state data assures that a known output will be applied to the output devices to maintain a previously designated safe operating condition during the previously mentioned failure modes. This data is sent in the configuration block. For more information, Table 1794-VHSC - High Speed Counter Module Image Table Mapping on page 35.

Device actions include:

- communication fault behavior
- idle state behavior
- input data behavior upon module removal

Communication Fault Behavior

You can configure the 1794 -VHSC response to a communication fault. Upon detection of a communication fault, the module can:

- leave the module output data in its last state (hold last state)
- reset the module output data to zero (reset)
- apply safe state data to the module output

Idle State Behavior

The $1794-\mathrm{VHSC}$ module responds to idle state according to the Communication Fault Behavior described above. The module can:

- leave the module output data in its last state (hold last state)
- reset the module output data to zero (reset)
- apply safe state data to the module output

Input Data Behavior upon Module Removal

I/O module input data sent by the adapter upon module removal is configurable. The adapter can:

- reset the module output data to zero (reset)
- leave the module output data in the last state before module removal (hold last state)

Frequency/Resolution Enhancement

This mode is only for use in modules with firmware revision D or later.
Frequency/Resolution Enhancement is a precise configuration which handles the decimal position adjustment to frequency count. Using this mode allows the module to read the frequency up to two positions to the right or left of the decimal place. For example, a rounded frequency of 13 Hz can be displayed as 1257 or 12.57 . The mode is only valid when the module is configured for Period Rate or Continuous Rate.

Frequency Resolution/Enhancement reports the frequency back as a floating point value in a single word and allows configuration of decimal places of resolution.

The upper byte of the counter control word (output word 0) is reserved for special mode, Enhancing Frequency/Resolution. In this mode, you can change significant digits of frequency display based on output word 2 for channel 0 and output word 3 for channel 1 . Decimal point placement is absolute positioning. -2
moves decimal point left 2 places dividing the frequency value by $100 ;+1$ moves the decimal point 1 place, multiplying by 10 , and so on. This allows frequency values to fit in a single word.

Applying the Frequency/Resolution Enhancement

To use this mode, proceed as follows.

ATTENTION: Use this enhancement mode with caution since no checks are performed to verify data. Unintended operation can occur.

1. Power up the FLEX chassis, or put the controller into RUN mode, or both. Let the 1794-VHSC module initialize as normal. Wait for the OK indicator on the module to go solid green.
2. You must place ladder logic in your PLC that performs the following:
a. Set a value between -4 and +2 into output word 2 and/or 3 .
b. Then set (1) the M11 bit in the upper byte of control word 0 . When the upper byte of the output word is not zero, the status indicator flashes red, and the TF bit (bit 12, input word 8) is asserted.
c. Next, reset (0) the M11 bit in the upper byte of output control word 0 . Clearing the upper byte of output word 0 restores the module to an operational state, clears the TF bit in input word 8 and returns the indicator to green. The module is now in enhanced mode.
3. To turn this feature off:
a. Set output word 2 or 3 to zero (no value)
b. Set (1) the M11 bit
c. Then reset (0) the M11 bit

$\begin{aligned} & \text { I/0 Image } \\ & \text { Input Size } \\ & \hline \end{aligned}$	1794-VHSC - High Speed Counter Module Image Table Mapping																
	0	Channel 0 Current Count (least significant word)															
	1	Channel 0 Current Count (most significant word)															
	2	Channel 1 Current Count (least significant word)															
1...9 Words	3	Channel 1 Current Count (most significant word)															
	4	Channel 0 Stored/Accumulated Count (least significant word)															
	5	Channel 0 Stored/Accumulated Count (most significant word)															
	6	Channel 1 Stored/Accumulated Count (least significant word)															
	7	Channel 1 Stored/Accumulated Count (most significant word)															
	8	PE	FP	NR	TF	OS	OS	OS	OS	C1	CO	ZF	ZS	C1	CO	ZF	ZS

Output Size	0	Reserved				M11	Reserved				0	VR	CP		0	VR	CP	CR
	1	0	LC	OE	FO	0	LC			FO	0	LC	OE		0	LC	OE	F0
0... 4 Words	2	Channel 0 PWM Output Value (0...95.00\%)																
	3	Channel 1 PWM Output Value (0.. .95.00\%)																

Configuration Size

56 Words	0	Counter Configuration															
	1	Filter Selection															
	2	Time Base Value/PWM Period															
	3	Channel 0 Gate Interval															
	4	Channel 1 Gate Interval															
	5	Reserved															
	6	Channel 0 Rollover Value (least significant word)															
	7	Channel 0 Rollover Value (most significant word)															
	8	Channel 1 Rollover Value (least significant word)															
	9	Channel 1 Rollover Value (most significant word)															
	10	Channel 0 Preset Value (least significant word)															
	11	Channel 0 Preset Value (most significant word)															
	12	Channel 1 Preset Value (least significant word)															
	13	Channel 1 Preset Value (most significant word)															
	14	Channel 0 Scaler															
	15	Channel 1 Scaler															
	16	0	0	0	0	0	0	0	0	S4	S3	S2	S1	F4	F3	F2	F1

\leadsto| 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $S 4$ | $S 3$ | S2 | S1 | F4 | F3 | F2 | F1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | S4 | S3 | S2 | S1 | F4 | F3 | F2 | F1 |
| 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | S4 | S3 | S2 | S1 | F4 | F3 | F2 | F1 |

20
21

First Counter 1st On Value (least significant word)
First Counter 1st On Value (most significant word)

22	First Counter 1st Off Value (least significant word)
23	First Counter 1st Off Value (most significant word)
24	First Counter 2nd On Value (least significant word)
25	First Counter 2nd On Value (most significant word)

26	First Counter 2nd Off Value (least significant word)
27	First Counter 2nd Off Value (most significant word)
28	First Counter 3rd On Value (least significant word)

28	First Counter 3rd On Value (least significant word)
29	First Counter 3rd On Value (most significant word)
30	First Counter 3rd Off Value (least significant word)
31	First Counter 3rd Off Value (most significant word)
32	First Counter 4th On Value (least significant word)
33	First Counter 4th On Value (most significant word)
34	First Counter 4th Off Value (least significant word)
35	Second Counter 1st On Value (least significant word)
36	Second Counter 1st On Value (most significant word)
37	Second Counter 1st Off Value (least significant word)
38	Second Counter 1st Off Value (most significant word)
39	Second Counter 2nd On Value (least significant word)
40	Second Counter 2nd On Value (most significant word)
41	Second Counter 2nd Off Value (least significant word)
42	Second Counter 2nd Off Value (most significant word)
43	Second Counter 3rd On Value (least significant word)
44	Second Counter 3rd On Value (most significant word)
45	Second Counter 3rd Off Value (least significant word)
46	Second Counter 3rd Off Value (most significant word)
47	Second Counter 4th On Value (least significant word)
49	Sth On Value (most significant word)

45904

Bit/Word Definitions

Input Word	Bit	Definition
Word 0	$\begin{aligned} & \hline 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Channel $\mathbf{0}$ current count - The current count consists of 2 words (32 bits) representing the current count of the 24-bit counter (in encoder, X2 encoder, X4 encoder, PWM) or the frequency (in periodrate, continuousrate, rate measurement.). The range of values is (0 < value < 16,777,215).
Word 1	$\begin{aligned} & 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	
Word 2	$\begin{aligned} & \hline 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Channel 1 current count - The current count consists of 2 words (32 bits) representing the current count of the 24-bit counter (in encoder, X2 encoder, X4 encoder, PWM) or the frequency (in period/rate, continuous/rate, rate measurement.). The range of values is (0 < value < 16,777,215).
Word 3	$\begin{aligned} & 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	
Word 4	$\begin{aligned} & \hline 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Channel $\mathbf{0}$ stored/accumulated count - These are 32-bit long word values representing the stored count of the counter at the time of some specified event. These words are not updated in counter modes (counter, X1 encoder, X2 encoder, X4 encoder) without store modes selected. With store modes selected, it is the counter value at the time of the specified Z input event. In PWM configuration, it is the counter value at the end of the period specified by the product of the time base times gate interval. In period/rate and continuous/rate, it is the total accumulation of unscaled Z pulses (if scaling is set to 128 , the accumulator will increase by 128 counts). The maximum frequency that accumulation can follow is (200 Hz X Scaler value). In rate measurement, it is the total number of pulses seen at the A input accumulated over each period as specified by the product of time base times gate interval. The range of values occupy the entire 32 -bit size from $0<$ value $<4,294,967,295$. These words are not cleared by changing the configuration.
Word 5	$\begin{aligned} & 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	
Word 6	$\begin{aligned} & 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Channel 1 stored/accumulated count - These are 32-bit long word values representing the stored count of the counter at the time of some specified event. These words are not updated in counter modes (counter, X1 encoder, X2 encoder, X4 encoder) without store modes selected. With store modes selected, it is the counter value at the time of the specified Z input event. In PWM configuration, it is the counter value at the end of the period specified by the product of the time base times gate interval. In period/rate and continuous/rate, it is the total accumulation of unscaled Z pulses (if scaling is set to 128 , the accumulator will increase by 128 counts). The maximum frequency that accumulation can follow is (200 Hz X Scaler value). In rate measurement, it is the total number of pulses seen at the A input accumulated over each period as specified by the product of time base times gate interval. The range of values occupy the entire 32 -bit size from $0<$ value $<4,294,967,295$. These words are not cleared by changing the configuration.
Word 7	$\begin{aligned} & \hline 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	

Bit/Word Definitions

Input Word	Bit	Definition
Word 8		Module Channel Status Word
	00	Zero input status bit (ZS) for Channel 0 - This bit represents the present status of the Z input. $\begin{aligned} & 0=0 \mathrm{ff} \\ & 1=\text { Input on } \end{aligned}$ This bit is uneffected by Z invert, Zl , in the counter configuration word.
	01	Zero frequency detected bit (ZF) for Channel 0 - Only used during frequency configurations (period/rate, continuous/rate, and rate measurement). In period/rate and continuous/rate, counts are acquired during on state of the Z input. At very low frequencies, the counter saturates, indicating a zero frequency detect. The time it takes to determine a zero frequency in these 2 configurations can be as long as $6.7 \mathrm{~s}(16,777,215$ counts $\mathrm{X} 1 / 5 \mathrm{MHz}$ X 2 half cycles of Z). In rate measurement, pulses on Z are counted over a sample interval specified by the product of time base X gate interval. The time to detect a zero frequency is determined by the sample interval example: time base $=0.100 \mathrm{~s}$, gate interval $=3$ is 300 ms to determine ZF.
	02, 03	Stored/data count bit (CO, C1) for Channel $\mathbf{0}$ - This count cycles thru $00,01,10,11,00$... Each time the stored/accumulated count words are updated, $C(0,1)$ is incremented. The PLC sample rate, including network delay and program scan, must be as fast or faster than the frequency of the event which updates.
	04	Zero input status bit (ZS) for Channel 1 - This bit represents the present status of the Z input. $\begin{aligned} & 0=0 \text { Off } \\ & 1=\text { Input on } \end{aligned}$
	05	Zero frequency detected bit (ZF) for Channel 1 - Only used during frequency configurations (period/rate, continuous/rate, and rate measurement). In period/rate and continuous/rate, counts are acquired during on state of the Z input. At very low frequencies, the counter saturates, indicating a zero frequency detect. The time it takes to determine a zero frequency in these 2 configurations can be as long as $6.7 \mathrm{~s}(16,777,215$ counts $\mathrm{X} 1 / 5 \mathrm{MHz} \times 2$ half cycles of Z$)$. In rate measurement, pulses on Z are counted over a sample interval specified by the product of time base X gate interval. The time to detect a zero frequency is determined by the sample interval example: time base $=0.100 \mathrm{~s}$, gate interval $=3$ is 300 ms to determine ZF.
	06, 07	Stored/data count bit (CO, C1) for Channel 1 - This count cycles through $00,01,10,11,00 \ldots$.. Each time the stored/accumulated count words are updated, $\mathrm{C}(0,1)$ is incremented. The PLC sample rate, including network delay and program scan, must be as fast or faster than the frequency of the event which updates.
	$\begin{aligned} & \hline 08 \ldots 11 \\ & (10 \ldots 13) \end{aligned}$	Output status indicators ($\mathbf{O S}$) - Bit 08 corresponds to output 0, bit 09 to output 1 , bit 10 to output 2 , and bit 11 to output 3 . $\begin{aligned} & 0=\text { output } O f f \\ & 1=\text { output } O n \end{aligned}$

Bit/Word Definitions

Input Word	Bit	Definition
Word 8	12 (14)	Test/fail bit (TF) - If the flexbus power or terminal base power is applied and the module fails during hardware tests, a fatal error occurs. The TF bit is asserted and the red module indicator turns on. An error code will be set in the module/channel status word which can be read using an instruction. The TF bit is also asserted if the upper byte of the counter control word is not zero. The upper byte of the counter control word (output word 0) is reserved for special mode, Enhancing Frequency/Resolution. To use this mode, set bit 11, and set a value in output word 2 and/or word 3 . When the upper byte of word 0 is not zero, the red module status indicator will flash and the TF bit is asserted to indicate the module has entered a test-mode state. Clearing the upper byte of output word 0 restores the module to an operation state, clears the TF bit and returns the indicator to green. Change significant digits of frequency display based on word 14 for channel 0 and word 15 for channel $1(-2$ moves decimal point left 2 places dividing the frequency value by $100 ;+1$ moves the decimal point 1 place, multiplying by 10 , and so on). This allows frequency values to fit in a single word. Note: To use Frequency/Resolution Enhancement feature provides appropriate configuration for each frequency mode (Mode 5,6,7). Firmware revision D changed decimal point placement to absolute positioning. Revision D firmware also checks for placement to be in the range of $-4 \ldots+2$. A value outside the range moves the decimal point to the zero position. Moving the decimal point to the left allows high frequencies, (commonly present in rate measurement) to fit within a single word. Moving the decimal point to the right allows low frequencies (commonly present in period and continuous rate modes) to have resolution displayed to 0.1 Hz and 0.01 Hz . Do not use scalars of Z/ $128, Z / 64, Z / 32$ and $Z / 16$ when using this test mode.
	13 (15)	Not ready status bit (NR) - Whenever 24V DC power is applied to the module, the hardware must be initialized. The NR bit will be asserted and the red module indicator will flash. If the red indicator continues flashing, and the green indicator momentarily turns on, the 24V DC power is below the module minimum.
	14 (16)	Field power fault bit (FP) - If the 24V DC module power drops, the FP bit is asserted, the green module indicator flashes, the module outputs turn off, and the module enters an idle state reporting status as it waits for power to be restored. Note: this bit does not indicate status of either output customer power supply.
	15 (17)	Programming error bit (PE) - This bit is asserted if incomplete, incorrect or conflicting set of configuration parameters are sent to the module. The green module status indicator will flash and an error code will be placed in bits 11:0 of the module/channel status word. The module will not enter a normal operating state. Bit definitions are shown in Table Input Status Word Bits on page 32.

Bit/Word Definitions

Output Word	Bit	Definition
Word 0	$\begin{aligned} & 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Counter Control Word
	00	Channel 0 Counter reset bit (CR) - A 0 to 1 transition of this bit clears the counter. Outputs are adjusted according to the window compare values.
	01	Channel 0 Counter preset bit (CP) - A 0 to 1 transition of this bit sets the counter to the value specified by the preset words. Outputs are adjusted according to the window compare values.
	02	Channel $\mathbf{0}$ Value reset bit (VR) - A 0 to 1 transition of this bit clears the stored/accumulated count words.
	03	This bit is always 0 .
	04	Channel 1 Counter reset bit (CR) - A 0 to 1 transition of this bit clears the counter. Outputs are adjusted according to the window compare values.
	05	Channel 1 Counter preset bit (CP) - A 0 to 1 transition of this bit sets the counter to the value specified by the preset words. Outputs are adjusted according to the window compare values.
	06	Channel 1 Value reset bit (VR) - A 0 to 1 transition of this bit clears the stored/accumulated count words.
	07	This bit is always 0 .
	$\begin{aligned} & 08 \ldots 10 \\ & (10 \ldots . .12) \end{aligned}$	Reserved for factory use.
	11 (13)	Frequency/Resolution enhancement bit (M11) Set this bit to 1 for frequency precision configuration (Refer to Word 8 Bit/Word Definitions on page 39 for details on frequency precision configuration). Note: You must place a value between -4 and +2 in output word 2 and/ or 3 to shift the decimal position accordingly.
	$\begin{aligned} & \hline 12 \ldots 15 \\ & (14 \ldots 17) \end{aligned}$	Reserved for factory use.
Word 1	$\begin{aligned} & 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Output Control Word
	00	Output 0 Force output bit (FO) - When set to 1 , output is turned on if 0 E is 1 . When $\mathrm{FO}=0$, output can be controlled by a compare match or as directed by the PWM settings.
	01	Output 0 Output enable bit ($\mathbf{O E}$) - When set to 1, output can be turned on from a force on, compare match or as directed by the PWM settings. When $\mathrm{OE}=0$, the associated output is turned off.

Bit/Word Definitions

02	Output 0 Local control bit (LC) - When set to 1 , output is controlled the counter if the FlexBus power is lost (for instance, the module detects a FlexBus reset signal). Note: When FlexBus power is lost, communication to the PC is lost. When $\mathrm{LC}=0$, the module clears its OE bit at a loss of FlexBus power. Set this bit as appropriate in the safe state word, since a communication fault occurs after adapter power is lost.
03	Not used - set to 0.
04	Output 1 Force output bit (FO) - When set to 1 , output is turned on if 0 E is 1 . When $\mathrm{FO}=0$, output can be controlled by a compare match or as directed by the PWM settings.
05	Output 1 Output enable bit (OE) - When set to 1, output can be turned on from a force on, compare match or as directed by the PWM settings. When $\mathrm{OE}=0$, the associated output is turned off.
06	Output 1 Local control bit (LC) - When set to 1 , output is controlled the counter if the FlexBus power is lost (for instance, the module detects a flexbus reset signal). Note: When flexbus power is lost, communication to the PC is lost. When $\mathrm{LC}=0$, the module clears its $O E$ bit at a loss of FlexBus power. Set this bit as appropriate in the safe state word, since a communication fault occurs after adapter power is lost.
07	Not used - set to 0.
08 (10)	Output 2 Force output bit (FO) - When set to 1 , output is turned on if OE is 1 . When $\mathrm{FO}=0$, output can be controlled by a compare match or as directed by the PWM settings.
09 (11)	Output 2 Output enable bit (OE) - When set to 1, output can be turned on from a force on, compare match or as directed by the PWM settings. When $\mathrm{OE}=0$, the associated output is turned off.
10 (12)	Output 2 Local control bit (LC) - When set to 1 , output is controlled the counter if the FlexBus power is lost (for instance, the module detects a FlexBus reset signal). Note: When FlexBus power is lost, communication to the PC is lost. When $L C=0$, the module clears its $O E$ bit at a loss of flexbus power. Set this bit as appropriate in the safe state word, since a communication fault occurs after adapter power is lost.
11 (13)	Not used - set to 0.
12 (14)	Output 3 Force output bit (FO) - When set to 1 , output is turned on if 0 E is 1 . When $\mathrm{FO}=0$, output can be controlled by a compare match or as directed by the PWM settings.
13 (15)	Output 3 Output enable bit (OE) - When set to 1, output can be turned on from a force on, compare match or as directed by the PWM settings. When $\mathrm{OE}=0$, the associated output is turned off.
14 (16)	Output 3 Local control bit (LC) - When set to 1 , output is controlled the counter if the FlexBus power is lost (for instance, the module detects a FlexBus reset signal). Note: When FlexBus power is lost, communication to the PC is lost. When $\mathrm{LC}=0$, the module clears its OE bit at a loss of FlexBus power. Set this bit as appropriate in the safe state word, since a communication fault occurs after adapter power is lost.
15 (17)	Not used - set to 0 .

Bit/Word Definitions

Word 2	$\begin{aligned} & \hline 00 \ldots 15 \\ & (00 \ldots .17) \end{aligned}$	Channel 0 PWM Output value - When the module is configured for PWM, the time base is enabled, the counter for the respective channel, its gate interval, rollover and 1st on and 1st off value are used. Ties can be used to direct the PWM signal to any or all outputs. The range of the PWM values is $0 \leq$ value ≤ 9500 decimal (for instance, $0.00 \% \leq$ value $\leq 95.00 \%$). The actual duty cycle at the output depends on the turn on and turn off times of the MOSFET, energy storage capability of the cable/load and the resistance from output to return.
Word 3	$\begin{aligned} & \hline 00 \ldots 15 \\ & (00 \ldots .17) \end{aligned}$	Channel 1 PWM Output value - When the module is configured for PWM, the time base is enabled, the counter for the respective channel, its gate interval, rollover and 1st on and 1st off value are used. Ties can be used to direct the PWM signal to any or all outputs. The range of the PWM values is $0 \leq$ value ≤ 9500 decimal (for instance, $0.00 \% \leq$ value $\leq 95.00 \%$). The actual duty cycle at the output depends on the turn on and turn off times of the MOSFET, energy storage capability of the cable/load and the resistance from output to return.

Configuration Word Definition

Configuration Word	Bit	Definition				
Configuration Word 0		Counter Configuration - The upper byte of this word configures counter 1, the lower byte configures counter 0 .				
	Bits 00... 03	03	02	01	00	Counter 0
	$\begin{aligned} & \text { Bits 08 .. } 11 \\ & (10 \ldots . .13) \end{aligned}$	$\begin{array}{\|l} \hline 11 \\ (13) \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 1(12) \end{array}$	$\begin{aligned} & 09 \\ & (11) \end{aligned}$	$\begin{array}{\|l} \hline 08 \\ \text { (10) } \end{array}$	Counter 1
		0	0	0	0	Counter
		0	0	0	1	Encoder
		0	0	1	0	Encoder X2
		0	0	1	1	PWM
		0	1	0	0	Encoder X4
		0	1	0	1	Period/Rate
		0	1	1	0	Continuous/Rate
		0	1	1	1	Rate Measurement
		Mode Selection				
	Bits 04... 07	06	05	04	Counter 0	
	$\begin{aligned} & \hline \text { Bits } 12 \ldots .14 \\ & (14 \ldots 16) \end{aligned}$	$\begin{array}{\|l\|} \hline 14 \\ (16) \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ (15) \end{array}$	$\begin{aligned} & \hline 12 \\ & (14) \end{aligned}$	Counter 1	
		0	0	0	Store count disabled	
		0	0	1	Mode 1 - store/continue	
		0	1	0	Mode 2 - store/wait/resume	
		0	1	1	Mode 3 - store;reset/wait/start	
		1	0	0	Mdoe 4 - store;reset/start	
	Bit 15 (17)	Invert the Z signal $-0=Z$ not inverted; $1=Z$ inverted				

Configuration Word Definition

Configuration Word	Bit	Definition				
Word 1		Filter Selection - Only 1 filter selection can be chosen at a time. Frequency = 50\% duty cycle.				
	Bits 00... 03	03	02	01	00	Counter 0
	$\begin{aligned} & \hline \text { Bits 08... } 11 \\ & (10 \ldots .13) \end{aligned}$	$\begin{aligned} & \hline 11 \\ & (13) \end{aligned}$	$\begin{aligned} & 10 \\ & (12) \end{aligned}$	$\begin{aligned} & 09 \\ & (11) \end{aligned}$	$\begin{aligned} & 08 \\ & (10) \end{aligned}$	Counter 1
		0	0	0	0	No filter
		0	0	0	1	$50 \mathrm{kHz}(10 \mu \mathrm{~s}+0 \mu \mathrm{~s} /-1.6 \mu \mathrm{~s})$
		0	0	1	0	$5 \mathrm{kHz}(100 \mu \mathrm{~s}+0 \mu \mathrm{~s} /-13.2 \mu \mathrm{~s})$
		0	1	0	0	$500 \mathrm{~Hz}(1.0 \mathrm{~ms}+0 \mathrm{~ms} /-1.25 \mu \mathrm{~s})$
		1	0	0	0	$50 \mathrm{~Hz}(10.0 \mathrm{~ms}+0 \mathrm{~ms} /-1.25 \mathrm{~ms})$
	Bit 12 (14)	Input A filter bit (AF) - 0 = not filtered; 1 = apply filter to input				
	Bit 13 (15)	Input B filter bit (BF) - 0 = not filtered; 1 = apply filter to input				
	Bit 14 (16)	Input Z filter bit (ZF) - 0 = not filtered; 1 = apply filter to input				
	Bit 15 (17)	Set to 0 .				
Word 2	$\begin{array}{\|l} \hline \text { Bits 00... } 15 \\ (00 \ldots .17) \end{array}$	Time base - Sets the fundamental time base for both counters. Resolution in ms , with a minimum of 10 ms intervals ($10 \mathrm{~ms}=10 ; 1 \mathrm{~s}=1000$). Time base must be entered when PWM and rate measurement are configured. The maximum programmed value is 3000 .				
Word 3	$\begin{aligned} & \text { Bits 00... } 15 \\ & (00 \ldots . \ldots 17) \end{aligned}$	Channel $\mathbf{0}$ Gate interval - Sets the individual counter gate interval using the time base setting as its time unit. Actual gate interval is time base X gate interval (for instance, time base of 10 X gate interval of $5=50 \mathrm{~ms}$). Maximum value is 3 s . Gate interval must be entered when PWM and rate measurement are configured.				
Word 4	$\begin{aligned} & \hline \text { Bits 00... } 15 \\ & (00 \ldots .17) \end{aligned}$	Channel 1 Gate interval - Sets the individual counter gate interval using the time base setting as its time unit. Actual gate interval is time base X gate interval (for instance, time base of 10 X gate interval of $5=50 \mathrm{~ms}$). Maximum value is 3 s . Gate interval must be entered when PWM and rate measurement are configured.				
Word 5	$\begin{aligned} & \hline \text { Bits 00... } 15 \\ & (00 \ldots . .17) \end{aligned}$	Do not use - reserved.				
Word 6 and 7	$\begin{aligned} & \hline \text { Bits 00... } 15 \\ & (00 \ldots .17) \end{aligned}$	Channel $\mathbf{0}$ Rollover - Sets the number of counts the counter accumulates before rolling over. For example, a setting of 1000 produces a count sequence of $998,999,0,1,2 \ldots$ while incrementing; and $2,1,0,999,998 . .$. while decrementing. Rollover is a 32-bit number with a usable range of 16,777,216. In PWM, this value is zero; in count, X1 encoder, X2 encoder and X4 encoder configurations, it must be some specified nonzero number. The value doesn.t matter in period/rate, continuous/rate and rate measurement configurations.				
Word 8 and 9	$\begin{aligned} & \text { Bits 00 .. } 15 \\ & (00 \ldots .17) \end{aligned}$	Channel 1 Rollover - Sets the number of counts the counter accumulates before rolling over. For example, a setting of 1000 produces a count sequence of $998,999,0,1,2 \ldots$ while incrementing; and $2,1,0,999,998 . .$. while decrementing. Rollover is a 32 -bit number with a usable range of $16,777,216$. In PWM, this value is zero; in count, X 1 encoder, X2 encoder and X4 encoder configurations, it must be some specified nonzero number. The value doesn.t matter in period/rate, continuous/rate and rate measurement configurations.				
Word 10 and 11	$\begin{aligned} & \text { Bits } 00 \ldots .15 \\ & 100.17) \end{aligned}$	Channel $\mathbf{0}$ Preset - This word sets the preset value the counter is loaded with when CP is asserted. This number has a range of $0 \leq$ value $\leq 16,777,216$.				
Word 12 and 13	$\begin{aligned} & \hline \text { Bits } 00 \ldots . .15 \\ & (00 \ldots .17) \end{aligned}$	Channel 1 Preset - This word sets the preset value the counter is loaded with when CP is asserted. This number has a range of $0 \leq$ value $\leq 16,777,216$.				

Configuration Word Definition

Configuration Word	Bit	Definition	
Word 14	$\begin{array}{\|l} \hline \text { Bits } 00 \ldots .15 \\ (00 \ldots . .17) \end{array}$	Channel $\mathbf{0}$ Scaler - This word scales the Z signal in period/rate and continuous/rate modes. If the filter is applied, the filtered Z signal is scaled. Set only 1 bit of the Scaler. Selecting a Scaler causes accumulated counts to be adjusted accordingly (for instance, selecting a Scaler of 128 increases the accumulated count by 128 after 128 Z pulses have been received). We recommend using the filter to reduce erroneous frequency readings any time you use the Scaler on the Z input.	
	00	Z	Fmins (frequency at which the 24-bit counter overflows) $=0.149 \mathrm{~Hz}$
	01	Z/2	Fmins (frequency at which the 24-bit counter overflows) $=0.298 \mathrm{~Hz}$
	02	Z/4	Fmins (frequency at which the 24-bit counter overflows) $=0.596 \mathrm{~Hz}$
	03	Z/8	Fmins (frequency at which the 24-bit counter overflows) $=1.192 \mathrm{~Hz}$
	04	Z/16	Fmins (frequency at which the 24-bit counter overflows) $=2.384 \mathrm{~Hz}$
	05	Z/32	Fmins (frequency at which the 24-bit counter overflows) $=4.768 \mathrm{~Hz}$
	06	Z/64	Fmins (frequency at which the 24-bit counter overflows) $=9.537 \mathrm{~Hz}$
	07	Z/128	Fmins (frequency at which the 24-bit counter overflows) $=19.073 \mathrm{~Hz}$
Word 15	$\begin{aligned} & \text { Bits } 00 \ldots 15 \\ & (00 \ldots 17) \end{aligned}$	Channel 1 Scaler - This word scales the Z signal in period/rate and continuous/rate modes. If the filter is applied, the filtered Z signal is scaled. Set only 1 bit of the Scaler. Selecting a Scaler causes accumulated counts to be adjusted accordingly (for instance, selecting a Scaler of 128 increases the accumulated count by 128 after 128 Z pulses have been received). We recommend using the filter to reduce erroneous frequency readings any time you use the Scaler on the Z input.	
	00	Z	Fmins (frequency at which the 24-bit counter overflows) $=0.149 \mathrm{~Hz}$
	01	Z/2	Fmins (frequency at which the 24-bit counter overflows) $=0.298 \mathrm{~Hz}$
	02	Z/4	Fmins (frequency at which the 24-bit counter overflows) $=0.596 \mathrm{~Hz}$
	03	Z/8	Fmins (frequency at which the 24-bit counter overflows) $=1.192 \mathrm{~Hz}$
	04	Z/16	Fmins (frequency at which the 24-bit counter overflows) $=2.384 \mathrm{~Hz}$
	05	Z/32	Fmins (frequency at which the 24-bit counter overflows) $=4.768 \mathrm{~Hz}$
	06	Z/64	Fmins (frequency at which the 24-bit counter overflows) $=9.537 \mathrm{~Hz}$
	07	Z/128	Fmins (frequency at which the 24-bit counter overflows) $=19.073 \mathrm{~Hz}$

Configuration Word Definition

Configuration Word	Bit	Definition
Words 16... 19	$\begin{aligned} & \hline \text { Bits } 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & 07 \\ & \text { Bits } 08 \ldots .15 \\ & (10 \ldots . \ldots) \end{aligned}$	Output Ties - These bits connect the specified output to the appropriate compare window. There are 8 windows, 4 per counter. Each output can be connected to any number of windows, from 1 to 8 . F1 = Tie output to first counter 1st window F2 = Tie output to first counter 2nd window F3 = Tie output to first counter 3rd window F4 = Tie output to first counter 4th window S1 = Tie output to second counter 1st window S2 = Tie output to second counter 2nd window S3 $=$ Tie output to second counter 3rd window S4 = Tie ouput to second counter 4th window Set to 0 .
Words 20... 51	$\begin{aligned} & \hline \text { Bits } 00 \ldots . .15 \\ & (00 \ldots .17) \end{aligned}$	Counter On and Off - These words program each of the 4 counter.s (first and second counter) on and off values. The first compare window for each counter is used in PWM, and when programmed for PWM, the associated compare window should remain at 0 . The range of each entry is $0 \leq$ value $\leq 16,777,215$. When a tie is connected to a window comparator, that window must be specified. These windows are always interpreted as counts, regardless of the configuration setting, and can be computed as follows: counts = (Scaler X 2.5E6)/desired frequency (for period/rate and continuous/rate) counts = time base X desired frequency (for rate measurement)
Words 52... 55	$\begin{aligned} & \hline \text { Bits } 00 \ldots . .15 \\ & (00 \ldots . \ldots 17) \end{aligned}$	Safe State Values - When the PLC transitions to PROG mode or a communication fault occurs, the module copies the safe state words into its real time working buffer. The definitions are identical to the those in the counter control word, except entering a PWM safe state value outside the range $0 . . .9500$ results in a Hold Last State. Word 52 is Counter Control Safe State; word 53 is Output Control Safe State; word 54 is Channel 0 PWM Safe State word 55 is Channel 1 PWM Safe State.

Chapter Summary

In this chapter you learned how to communicate with your module. Read the next chapter to learn how to interpret the module LED status indicators.

Interpret Status Indicators for your FLEX I/O Module

Overview

Status Indicators

Use the following table to determine the indicator conditions and status.
Status Indicator Identification

Indicator	State	Status
A (status of input A)	Yellow	Input A active.
	Off	Input A not active.
B (status of input B)	Yellow	Input B active.
	Off	Input B not active.
Z (status of input Z)	Yellow	Input Z active.
	Off	Input Z not active.
Out 0, 1,2,3	Yellow	Output is on.
	Off	Individual output is off.

When an active indicator (yellow) is lighted, a valid signal (active high or active low) is present at the input terminals.

The module power/status indicator (OK) shows power applied to the module, and the status of the module.

Power/Status Indicator Interpretation

Indicator	State	Status
OK	Solid red	- Hardware diagnostic error, TF set to 1 and module/channel status contains error code. - Hardware runtime failure (that is, watchdog timeout), module communication ceases.
	Flashing red	- Module is configuring hardware, NR is set to 1. - Module is in test mode (bits $8 \ldots 15$ of counter control word are nonzero), TF set to 1 .
	Flashing red (with occasional flashing green)	Module 24V power is below minimum rating.
	Solid green	Module is active and acting normally.
	Flashing green	- Module is not configured. - Programming error, PE is set to 1 and error code is supplied in bits 0 ... 11 of module/channel status word. - Field power fault, FP set to 1. - Adapter powered down, and module local power still active. - ControlNet cable disconnected. - PLC in PROG mode.

Diagnostic Codes Returned by the Module

If an incomplete, incorrect or conflicting set of configuration parameters are sent to the module, the PE bit is asserted, the green module status indicator flashes, and an error code is displayed in bits $0 \ldots .11$ of the module/channel status word. These codes are identified below.

Diagnostics Reported by Input Data Word 8

Read Word	Bit	Indication
Word 8	00	A reserved configuration or mode was programmed.
	01	ZF/BF/AF were selected and no filter was programmed, or multiple filters were selected.
	02	A timebase was entered that was not a multiple of 10 , or the timebase is out of range (>3000, that is 3 s).
	03	A configuration requiring a timebase was selected and no gate interval was set, or the gate interval is out of range ($>3 \mathrm{~s}$) or the product of timebase and gate interval is greater than 3 s .
	04	A rollover of zero was programmed through PWM was not selected; a rollover was programmed and PWM was selected; or the rollover is out of range ($1 \leq$ rollover $\leq 16,777,216$).
Word	05	The preset ($1 \leq$ preset $\leq 16,777,216$) is out of range.
	06	A configuration was selected that requires a scalar, and no scalar was programmed or multiple scalars were selected.
	07	A tie has been connected to an unprogrammed window.
	08	Counter 0 window ON and OFF values are equal and not zero or counter 0 window ON and OFF value greater than $16,777,215$.
	09	Counter 1 window ON and OFF values are equal and not zero or counter 1 window ON and OFF value greater than $16,777,215$.
	10	Reserved
	11	

During hardware self-tests, when either FlexBus power or terminal base power is first applied and a fatal error occurs, the TF bit is asserted and the red module status indicator turns on. An error code is placed in the lower byte of the module/channel status word to indicate the failed resource.

Error Code Definitions

Read Word	Bit	02	01	00	Dec.	Definition
Word 8	00... 07	0	0	1	1	RAM test failed.
		0	1	0	2	ROM checksum test failed.
		0	1	1	3	EEPROM test failed.
		1	0	0	4	Programmable Gate Array loading failed
		All other combinations not used.				

This chapter described how to troubleshoot your adapter module by interpreting the status indicators and module/channel status word error codes.

Chapter Summary

Notes:

Specifications

Overview

This appendix contains general and environmental specifications and certifications for the FLEX I/O Very High Speed Counter Module.

Input Specifications

Attribute	Value
Number of input channels	2
Number of inputs per counter	2 groups of $A / \bar{A}, B / \bar{B}$, and Z / \bar{Z} pairs with $5 V D C$ or 15...24V DC terminations
Input voltage	5 V DC or 15...24V DC (Determined by terminal base terminations)
Input current	5 V DC terminations: 19.1 mA @ 5V DC 25.7 mA @ 6V DC 15...24V DC terminations: 6.1 mA @ 15V DC 10.2 mA @ 24V DC
Voltage, input, off-state	5V DC terminations: $\leq 1.25 \mathrm{~V}$ DC 15...24V DC terminations: $\leq 1.8 \mathrm{~V}$ DC
Current, input, off-state	$\leq 0.25 \mathrm{~mA}$
Voltage, input, on-state	5V DC terminations: $\geq 2.6 \mathrm{~V}$ DC 15...24V DC terminations: $\geq 12.5 \mathrm{~V}$ DC
Current, input, on-state	$\geq 5 \mathrm{~mA}$
Voltage, on-state, max	5 V DC terminations: $\pm 6 \mathrm{~V}$ 15...24V DC terminations (Refer to Derating Curve)
Input frequency, max	1.0 MHz counter and encoder X1 (no filters) 500 kHz encoder X2 (no filters) 250 kHz endocer X4 (no filters)
Input filter selections	Off, $10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 1.0 \mathrm{~ms}, 10.0 \mathrm{~ms} \mathrm{per} \mathrm{A} / \mathrm{B} / \mathrm{Z}$ group

Output Specifications

Attribute	Value
Number of outputs	2 isolated groups of 2: (0.5A @ 5V DC, max; 1.0A @ 12...24V DC, max)
Output control	Outputs can be tied to 8 compare windows
Voltage range, output supply	$5 \ldots 7 \mathrm{~V}$ DC; 10...31V DC
Leakage current, off-state	Less than $300 \mu \mathrm{~A}$
Voltage drop, on-state	5 V DC terminations: 0.9 V DC @ 0.5 A $12 \ldots 24 \mathrm{~V}$ DC terminations: 0.9 V DC @ 1.0 A

Output Specifications

Attribute	Value
Current, on-state, max	5 V DC terminations: 0.5 A $12 \ldots 24 \mathrm{~V}$ DC terminations: 1.0 A
Current per output pair, max	5 V DC terminations: 0.5 A $12 \ldots .24 \mathrm{~V}$ DC terminations: 1.0 A
Short circuit current	5 V DC terminations: 0.9A $12 \ldots . .24 \mathrm{~V}$ DC terminations: 4.0 A Outputs are short-circuit protected and turned off until power is cycled. Surge current
Delay Time for 50 ms, repeatable every 2 s Off to On On to Off	$25 \mu \mathrm{~s}$ (load dependent) $150 \mu \mathrm{~s}$ (load dependent)

General Specifications

Attribute	Value
Module location	1794-TB3G and 1794-TB3GS
External DC power supply voltage range, nom	24V DC
Supply voltage	19.2...31.2V DC (includes 5\% AC ripple)
Supply current	100 mA @ 24V DC
Dimensions, $\mathrm{HxW} \times \mathrm{D}$ (with module installed on terminal base)	$\begin{aligned} & 94 \times 94 \times 69 \mathrm{~mm} \\ & (3.7 \times 3.7 \times 2.7 \mathrm{in} .) \end{aligned}$
Isolation voltage	50V (continuous), Basic Insulation Type, between six isolated areas including: FlexBus Module 24V DC power A0/BO/ZO inputs A1/B1/Z1 inputs 00/01 and output power supply 1 02/03 and output power supply 2 Tested @ 850V DC for 1 s
FlexBus current	75 mA @ 5V DC (with terminal base power off)
Power dissipation, max	5.0 W @ 31.2V DC
Thermal dissipation, max	17.1 BTU/hr @ 31.2V DC
Indicators (field side driven, logic side indication)	1 green/red power/status indicator 6 yellow input status indicators - logic side 4 yellow output tatus indicators - logic side
Keyswitch position	1

Environmental Specifications

Attribute	Value
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): $0 . .55^{\circ} \mathrm{C}\left(32 \ldots 131^{\circ} \mathrm{F}\right)$
Temperature, nonoperating	IEC 60068-2-1 (Test Ab, Un-packaged Non-operating Cold), IEC 60068-2-2 (Test Bb, Un-packaged Non-operating Dry Heat), IEC 60068-2-14 (Test Na, Un-packaged Non-operating Thermal Shock): $-40 \ldots 85^{\circ} \mathrm{C}$ (-40... $185^{\circ} \mathrm{F}$)
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 5...95\% non-condensing
Vibration	IEC60068-2-6 (Test Fc, Operating): 5 g @ 10... 500 Hz
Shock, operating	IEC60068-2-27 (Test Ea, Unpackaged shock): 30 g
Shock, nonoperating	EC60068-2-27 (Test Ea, Unpackaged shock): 50 g
Emissions	CISPR 11: Group 1, Class A (with appropriate enclosure)
ESD Immunity	IEC 61000-4-2: 6 kV contact discharges 8 kV air discharges
Radiated RF immunity	IEC 61000-4-3: $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from $80 \ldots 2000 \mathrm{MHz}$ $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse 100% AM at 900 MHz $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse 100% AM at 1890 MHz $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from $2000 \ldots 2700 \mathrm{MHz}$
EFT/B immunity	IEC 61000-4-4: $\pm 2 \mathrm{kV} @ 5 \mathrm{kHz}$ on power ports $\pm 2 \mathrm{kV} @ 5 \mathrm{kHz}$ on signal ports
Surge transient immunity	IEC 61000-4-5: $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on power ports $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on signal ports ± 2 kV line-earth(CM) on shielded ports
Conducted RF immunity	IEC 61000-4-6: 10 V rms with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 150 kHz . . 80 MHz
Enclosure type rating	None (open-style)
Wire size	Determined by installed terminal base
Wiring category ${ }^{(1)}$	2 - on signal ports 2 - on power ports
Terminal base screw torque	Determined by installed terminal base

(1) Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

Certifications

| Certification (when
 product is marked) |
| :--- | :--- |
| $\mathbf{1 0}$ | Description

(1) See the Product Certification link at www.ab.com for Declarations of Conformity, Certificates, and other certification details.

Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 24V DC supply voltages and ambient temperatures.
This includes all possible mounting positions, including inverted horizontal.

Programming Your Very High Speed Counter Module

To initiate communication between the $1794-V H S C$ very high speed counter module and your PLC processor, you must use RSLogix 5000 software.

Refer to the RSLogix software manuals for information on communicating with this 1794-VHSC very high speed counter module.

Notes:

Numerics

1794-TB3G 25, 27, 28, 29
1794-TB3GK 27, 28, 29
1794-TB3GS 25, 27, 28, 29
1794-VHSC 34, 49
description 5
features 5
interpret status indicator 49

A

adapter 21, 23, 24, 25, 29
1794-VHSC 21
capabilities 27
install 21
maximum capacity 27
additional resources 3

B

backplane 23, 26
behavior
communication fault 36
idle state 36
input data 36

C

cabling
length 29
power 29
chassis 28,29
codes
diagnostic 51
error 51
compatible
terminal base 28
configuration
error 34
connect 28
connector 26
female 22
FlexBus 23
male 22
count
scale 10
store 10
counter mode
continuous 8
counters
reset 10
current draw 21

D

daisychain 29
data transfer
scheduled 34 unscheduled 34
definitions
bit/word 41
dimensions
drilling 25
DIN rail 21, 23
drilling
illustration 25
E
encoder mode
X1 8
X2 8
X48

F
female connector 22
FLEX I/O
VHSC 27
FlexBus 18, 22, 23, 24, 26
connector 23, 26
interruption 22

I/O data transfer

non-discrete 34
I/O map 34
I/O module
fault 36
fault bits 35
I/O status 35
indicator
state 50
status 50
indicators
interpret 49
input
data behavior 36
gate/reset 10
install
physically 21
installation 23
drilling 24
hazardous location 26
install connecting wiring 22
install module 21
mount terminal base 21
mounting kit 24
terminal base mounting 25
wall or panel mounting 24

K

keyswitch 25
position 25
L
location
hazardous 26

M

male connector 22
messaging
from programming devices 34
peer-to-peer 34
mode
continuous/rate 14
period/rate 14
rate measurement 15
module
installation 21
position 29
specifications 53
mounting kit 24

N

network
EtherNet/IP 21

0

operation

unintended 22
output
values 18
outputs
connecting to counters 18
enabling 17
force 17
isolation 18
\mathbf{P}
panel
mounting 24
power
backplane 26
cabling 29
module 29
supply 29

S

specification
DIN rail 23
specifications
certifications 56
derating curve 56
environmental 55
general 53
status indicator 49, 54

T

terminal base 22, 24, 26, 27, 28, 29, 36
grounding 29
replace 22
wiring 28
terminal base unit 28

U
 unscheduled

messaging 34
operations 34
V
value
rollover 10
scaler 12, 14
VHSC module
wiring 28

W

wiring 24, 28, 29
1794-TB3G, 1794-TB3GS, 1794-TB3GK 27
connect 29
connecting 22
frequency module 28

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual.
You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440 .646 .3434
Outside United States or Canada	Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone en.html, or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

